85 research outputs found

    Band 3 Missense Mutations and Stomatocytosis: Insight into the Molecular Mechanism Responsible for Monovalent Cation Leak

    Get PDF
    Missense mutations in the erythroid band 3 protein (Anion Exchanger 1) have been associated with hereditary stomatocytosis. Features of cation leaky red cells combined with functional expression of the mutated protein led to the conclusion that the AE1 point mutations were responsible for Na+ and K+ leak through a conductive mechanism. A molecular mechanism explaining mutated AE1-linked stomatocytosis involves changes in AE1 transport properties that become leaky to Na+ and K+. However, another explanation suggests that point-mutated AE1 could regulate a cation leak through other transporters. This short paper intends to discuss these two alternatives

    Bidirectional KCNQ1:β-catenin interaction drives colorectal cancer cell differentiation.

    Get PDF
    The K+ channel KCNQ1 has been proposed as a tumor suppressor in colorectal cancer (CRC). We investigated the molecular mechanisms regulating KCNQ1:β-catenin bidirectional interactions and their effects on CRC differentiation, proliferation, and invasion. Molecular and pharmacologic approaches were used to determine the influence of KCNQ1 expression on the Wnt/β-catenin signaling and epithelial-to-mesenchymal transition (EMT) in human CRC cell lines of varying stages of differentiation. The expression of KCNQ1 was lost with increasing mesenchymal phenotype in poorly differentiated CRC cell lines as a consequence of repression of the KCNQ1 promoter by β-catenin:T-cell factor (TCF)-4. In welldifferentiated epithelial CRC cell lines, KCNQ1 was localized to the plasma membrane in a complex with β-catenin and E-cadherin. The colocalization of KCNQ1 with adherens junction proteins was lost with increasing EMT phenotype. ShRNA knock-down of KCNQ1 caused a relocalization of β-catenin from the plasma membrane and a loss of epithelial phenotype in CRC spheroids. Overexpression of KCNQ1 trapped β-catenin at the plasma membrane, induced a patent lumen in CRC spheroids, and slowed CRC cell invasion. The KCNQ1 ion channel inhibitor chromanol 293B caused membrane depolarization, redistribution of β-catenin into the cytosol, and a reduced transepithelial electrical resistance, and stimulated CRC cell proliferation. Analysis of human primary CRC tumor patient databases showed a positive correlation between KCNQ1:KCNE3 channel complex expression and disease-free survival. We conclude that the KCNQ1 ion channel is a target gene and regulator of the Wnt/β-catenin pathway, and its repression leads to CRC cell proliferation, EMT, and tumorigenesis

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Toward a Symphony of Reactivity: Cascades Involving Catalysis and Sigmatropic Rearrangements

    Full text link

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Il y a-t-il un avenir pour l'élevage transhumant en zone cotonnière ? Réflexion à partir de l'expérience d'un projet de développement dans l'ouest du Burkina Faso

    Get PDF
    International audiencePar une démarche participative de responsabilisation des populations locales et un cofinancement de réalisations pastorales, le projet de développement rural intégré Houet-Kossi-Mouhoun a tenté d'impulser une dynamique nouvelle afin de réduire les situations conflictuelles et d'amorcer un large débat sur la place de l'élevage en zone cotonnière. L'évocation de certaines actions (aménagement de la zone pastorale de Barani, aménagement d'infrastructures le long des axes de transhumance) permettra, au-delà du bilan d'une opération particulière de développement, de s'interroger sur l'avenir de l'élevage transhumant: est-il possible de maintenir des pratiques pastorales de moins en moins compatibles avec le degré d'occupation humaine de l'espace ? Quelles peuvent être les adaptations nécessaires pour permettre une insertion dans l'économie régionale ? (Résumé d'auteur

    Importance of Several Cysteine Residues for the Chloride Conductance of Trout Anion Exchanger 1 (tAE1)

    No full text
    International audienceIn this study, we devised a cysteine-focused point mutation analysis of the chloride channel function of trout anion exchanger 1 (tAE1) expressed in X. laevis oocytes. Seven cysteines, belonging to the transmembrane domain of tAE1, were mutated into serines (either individually or in groups) and the effects of these mutations on the chloride conductance of injected oocytes were measured. We showed that three cysteines were essential for the functional expression of tAE1. Namely, mutations C462S, C583S and C588S reduced Cl À conductance by 68%, 52% and 83%, respectively, when compared to wild type tAE1. These residual conductances were still inhibited by 0.5 mM niflumic acid. Western blot experiments demonstrated that C462 was involved in protein expression onto the plasma membrane. A mutant devoid of this residue was unable to express onto the plasma membrane, especially if several other cysteines were missing: consequently, the cysteine-less mutant of tAE1 was not functional. C583 and C588 were involved in the channel function of tAE1 as shown by anion substitution experiments proving that selectivity of the mutated pore differs from the wild type one. On the contrary, they were not involved in the Cl À /HCO À 3 exchange function of tAE1, as demonstrated by intracellular pH measurements. These and several complementary mutations allow us to conclude that a mutant of tAE1 containing the sole C462 can drive a marginal Cl À current; however, the minimal configuration necessary to get optimal functional expression of the tAE1 chloride channel is that of a mutant containing unaffected residues C462, C583 and C588
    corecore