1,733 research outputs found

    Water Users’ Perspectives: Summary of Withdrawal Survey Responses and Commentary

    Get PDF
    The state of South Carolina is currently in a multiyear process of updating the State Water Plan, and water demand projections are an important component of that work. Predictions of water demand are inherently uncertain, but perhaps they can benefit from input by a diverse and robust sample of water users. A brief survey regarding water use was distributed to 780 permitted and registered water users in the state, including all water suppliers, industries, and irrigators withdrawing more than 3 million gallons in a month or more than 100,000 gallons in a day. There are 316 responses to 10 quantitative survey items that are summarized, presented, and discussed. Results indicate that most respondents plan to maintain their current levels of water use, consider their withdrawal reports to be accurate within 10%, and believe their current water supplies to be critical to their enterprise. A qualitative review of comments noted on survey responses includes a variety of potential drivers of water demand. The results motivate a discussion of recommendations for future research

    Stakeholder Engagement: Methods of Inclusion in South Carolina State Water Plan Decision-Making

    Get PDF
    Stakeholder engagement in natural resource planning has become increasingly important at local and state levels. Including stakeholders in decision-making can increase buy-in and public support of final regional and state recommendations. It can also lead to policy change and improved implementation outcomes resulting from these planning processes. South Carolina is developing a stakeholder-driven water plan, although it is several years away from being finalized. The methods used in this process are a departure from past efforts. Stakeholder inclusion in decision-making in the water planning process is described and analyzed in this article. The focus is on the specific phases of the process and the methods of inclusion used or those anticipated to be used. In this cycle, stakeholder involvement in decisions range from informational/advisory to consultative to decision-making

    Development of Extended Unimpaired Streamflow Records in the Saluda Basin, South Carolina

    Get PDF
    This paper presents the steps involved and the methodologies employed in the first phase of the South Carolina Surface Water Assessment - development of extended and unimpaired streamflow estimates based on USGS gage data in the Saluda basin. Streamflow data are first adjusted to remove effects of anthropogenic impairments. Adjustments are made for reservoirs, withdrawals, and discharges based on available documentation. Where documentation is insufficient, hindcasting methods are used. The resulting datasets are called unimpaired flows (UIFs). The UIFs are then extended in time from 1925, the starting date of the first continuous stream discharge data available in the basin, through 2013. Candidate reference gages for each short-record gage are selected based on a qualitative assessment. Area ratio and Maintenance of Variance Extension (Hirsch, 1982) methods are applied. Statistical and graphical evaluation of the extension results is followed by composition of extended UIFs

    Comparative assessment of filtration- and precipitation-based methods for the concentration of SARS-CoV-2 and other viruses from wastewater

    Get PDF
    Wastewater-based epidemiology (WBE) has been widely used to track levels of SARS-CoV-2 infection in the community during the COVID-19 pandemic. Due to the rapid expansion of WBE, many methods have been used and developed for virus concentration and detection in wastewater. However, very little information is available on the relative performance of these approaches. In this study, we compared the performance of five commonly used wastewater concentration methods for the detection and quantification of pathogenic viruses (SARS-CoV-2, norovirus, rotavirus, influenza, and measles viruses), fecal indicator viruses (crAssphage, adenovirus, pepper mild mottle virus), and process control viruses (murine norovirus and bacteriophage Phi6) in laboratory spiking experiments. The methods evaluated included those based on either ultrafiltration (Amicon centrifugation units and InnovaPrep device) or precipitation (using polyethylene glycol [PEG], beef extract-enhanced PEG, and ammonium sulfate). The two best methods were further tested on 115 unspiked wastewater samples. We found that the volume and composition of the wastewater and the characteristics of the target viruses greatly affected virus recovery, regardless of the method used for concentration. All tested methods are suitable for routine virus concentration; however, the Amicon ultrafiltration method and the beef extract-enhanced PEG precipitation methods yielded the best recoveries. We recommend the use of ultrafiltration-based concentration for low sample volumes with high virus titers and ammonium levels and the use of precipitation-based concentration for rare pathogen detection in high-volume samples. IMPORTANCE As wastewater-based epidemiology is utilized for the surveillance of COVID-19 at the community level in many countries, it is crucial to develop and validate reliable methods for virus detection in sewage. The most important step in viral detection is the efficient concentration of the virus particles and/or their genome for subsequent analysis. In this study, we compared five different methods for the detection and quantification of different viruses in wastewater. We found that dead-end ultrafiltration and beef extract-enhanced polyethylene glycol precipitation were the most reliable approaches. We also discovered that sample volume and physico-chemical properties have a great effect on virus recovery. Hence, wastewater process methods and start volumes should be carefully selected in ongoing and future wastewater-based national surveillance programs for COVID-19 and beyond

    Comparative assessment of filtration- and precipitation-based methods for the concentration of SARS-CoV-2 and other viruses from wastewater

    Get PDF
    Wastewater-based epidemiology (WBE) has been widely used to track levels of SARS-CoV-2 infection in the community during the COVID-19 pandemic. Due to the rapid expansion of WBE, many methods have been used and developed for virus concentration and detection in wastewater. However, very little information is available on the relative performance of these approaches. In this study, we compared the performance of five commonly used wastewater concentration methods for the detection and quantification of pathogenic viruses (SARS-CoV-2, norovirus, rotavirus, influenza, and measles viruses), fecal indicator viruses (crAssphage, adenovirus, pepper mild mottle virus), and process control viruses (murine norovirus and bacteriophage Phi6) in laboratory spiking experiments. The methods evaluated included those based on either ultrafiltration (Amicon centrifugation units and InnovaPrep device) or precipitation (using polyethylene glycol [PEG], beef extract-enhanced PEG, and ammonium sulfate). The two best methods were further tested on 115 unspiked wastewater samples. We found that the volume and composition of the wastewater and the characteristics of the target viruses greatly affected virus recovery, regardless of the method used for concentration. All tested methods are suitable for routine virus concentration; however, the Amicon ultrafiltration method and the beef extract-enhanced PEG precipitation methods yielded the best recoveries. We recommend the use of ultrafiltration-based concentration for low sample volumes with high virus titers and ammonium levels and the use of precipitation-based concentration for rare pathogen detection in high-volume samples

    Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Cross section measurement of t-channel single top quark production in pp collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for new physics with dijet angular distributions in proton-proton collisions at root S = 13 TeV

    Get PDF
    Peer reviewe

    Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks

    Get PDF
    A search for supersymmetry is presented based on proton-proton collision events containing identified hadronically decaying top quarks, no leptons, and an imbalance p(T)(miss) in transverse momentum. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 35.9 fb(-1). Search regions are defined in terms of the multiplicity of bottom quark jet and top quark candidates, the p(T)(miss) , the scalar sum of jet transverse momenta, and themT2 mass variable. No statistically significant excess of events is observed relative to the expectation from the standard model. Lower limits on the masses of supersymmetric particles are determined at 95% confidence level in the context of simplified models with top quark production. For a model with direct top squark pair production followed by the decay of each top squark to a top quark and a neutralino, top squark masses up to 1020 GeVand neutralino masses up to 430 GeVare excluded. For amodel with pair production of gluinos followed by the decay of each gluino to a top quark-antiquark pair and a neutralino, gluino masses up to 2040 GeVand neutralino masses up to 1150 GeVare excluded. These limits extend previous results.Peer reviewe

    Search for dijet resonances in proton-proton collisions at root s=13 TeV and constraints on dark matter and other models

    Get PDF
    Correction: DOI:10.1016/j.physletb.2017.09.029Peer reviewe
    corecore