228 research outputs found

    Thermal-Mechanical Properties of Polyurethane-Clay Shape Memory Polymer Nanocomposites

    Get PDF
    Shape memory nanocomposites of polyurethane (PU)-clay were fabricated by melt mixing of PU and nano-clay. Based on nano-indentation and microhardness tests, the strength of the nanocomposites increased dramatically as a function of clay content, which is attributed to the enhanced nanoclay–polymer interactions. Thermal mechanical experiments demonstrated good mechanical and shape memory effects of the nanocomposites. Full shape memory recovery was displayed by both the pure PU and PU-clay nanocomposites.

    Potassium zinc borate, KZnB3O6

    Get PDF
    The title compound, KZnB3O6 contains a remarkable [B6O12]6− group ( symmetry) formed by two rings linked by edge-sharing BO4 tetra­hedra, a feature that has only been observed previously under high pressure conditions. These borate groups are connected through distorted ZnO4 tetra­hedra in edge-shared pairs ( symmetry), forming a three-dimensional network whose cavities are filled by K+ cations

    4-{2-[4-(Dimethyl­amino)­phen­yl]ethen­yl}-1-methyl­pyridinium 2,4,6-trimethyl­benzene­sulfonate monohydrate

    Get PDF
    In the crystal structure of the title organic salt, C16H19N2 +·C9H11O3S−·H2O, the cations pack head-to-tail within a sheet and are aligned in opposite directions in neighboring sheets. The benzene ring of the anion makes an angle of 76.99 (6)° with the plane of the cationic chromophore. The cations are situated in the ab plane, whereas the benzene rings of the anions lie in the ac plane

    K-Domain Splicing Factor OsMADS1 Regulates Open Hull Male Sterility in Rice

    Get PDF
    AbstractWe identified the rice floral organ development mutant, termed as open hull and male sterile 1 (ohms1), from the progeny of the indica restorer line Zhonghui 8015 treated with 60Co γ-ray irradiation. The ohms1 mutant exhibited an open hull and lemma- and palea-like structure conversion between the anthers and stigma, which resulted in the ohms1 mutant spikelet showing ‘tridentate lemma’. The ohms1 mutant was entirely sterile but had 60%–70% fertile pollen. Genetic analysis and gene mapping showed that ohms1 was controlled by a single recessive gene, and the mutant gene was fine-mapped to a 42-kb interval on the short arm of chromosome 3 between markers KY2 and KY29. Sequence analysis of the four open reading frames in this region revealed that the mutant carried a single nucleotide transformation (A to G) at the last base of the fifth intron, which was likely corresponded to ohms1 phynotype, in an MIKC type MADS-box gene OsMADS1 (LOC_Os03g11614). Enzyme digestion and cDNA sequencing further indicated that the variable splicing was responsible for the deletion of the sixth exon in ohms1, but no structural changes in the MADS domain or amino acid frame shifts appeared. Additionally, real-time fluorescent quantitative PCR analysis showed that the OsMADS1 expression level decreased significantly in the ohms1 mutant. The expression levels of rice flowering factors and floral glume development-related genes also changed significantly. These results demonstrate that OsMADS1 may play an important role in rice floral organ development, particularly in floral glume development and floret primordium differentiation

    Gut Microbiota-Based Pharmacokinetics and the Antidepressant Mechanism of Paeoniflorin

    Get PDF
    Paeoniflorin, the main component of Xiaoyao Wan, presents low oral bioavailability and unclear antidepressant mechanism. To elucidate the potential reasons for the low bioavailability of paeoniflorin and explore its antidepressant mechanism from the perspective of the gut microbiota, here, a chronic unpredictable depression model and forced swimming test were firstly performed to examine the antidepressant effects of paeoniflorin. Then the pharmacokinetic study of paeoniflorin in rats was performed based on the gut microbiota; meanwhile, the gut microbiota incubated with paeoniflorin in vitro was used to identify the possible metabolites of paeoniflorin. Molecular virtual docking experiments together with the specific inhibitor tests were applied to investigate the mechanism of paeoniflorin metabolism by the gut microbiota. Finally, the intestinal microbiota composition was analyzed by 16S rRNA gene sequencing technology. The pharmacodynamics tests showed that paeoniflorin had significant antidepressant activity, but its oral bioavailability was 2.32%. Interestingly, we found paeoniflorin was converted into benzoic acid by the gut microbiota, and was mainly excreted through the urine with the gut metabolite benzoic acid as the prominent excreted form. Moreover, paeoniflorin could also regulate the composition of the gut microbiota by increasing the abundance of probiotics. Therefore, the metabolism effect of gut microbiota may be one of the main reasons for the low oral bioavailability of paeoniflorin. Additionally, paeoniflorin can be metabolized into benzoic acid via gut microbiota enzymes, which might exert antidepressant effects through the blood–brain barrier into the brain

    Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys

    Get PDF
    Hypobaric hypoxia (HH) exposure can cause serious brain injury as well as life-threatening cerebral edema in severe cases. Previous studies on the mechanisms of HH-induced brain injury have been conducted primarily using non-primate animal models that are genetically distant to humans, thus hindering the development of disease treatment. Here, we report that cynomolgus monkeys (Macaca fascicularis) exposed to acute HH developed human-like HH syndrome involving severe brain injury and abnormal behavior. Transcriptome profiling of white blood cells and brain tissue from monkeys exposed to increasing altitude revealed the central role of the HIF-1 and other novel signaling pathways, such as the vitamin D receptor (VDR) signaling pathway, in co-regulating HH-induced inflammation processes. We also observed profound transcriptomic alterations in brains after exposure to acute HH, including the activation of angiogenesis and impairment of aerobic respiration and protein folding processes, which likely underlie the pathological effects of HH-induced brain injury. Administration of progesterone (PROG) and steroid neuroprotectant 5α-androst-3β,5,6β-triol (TRIOL) significantly attenuated brain injuries and rescued the transcriptomic changes induced by acute HH. Functional investigation of the affected genes suggested that these two neuroprotectants protect the brain by targeting different pathways, with PROG enhancing erythropoiesis and TRIOL suppressing glutamate-induced excitotoxicity. Thus, this study advances our understanding of the pathology induced by acute HH and provides potential compounds for the development of neuroprotectant drugs for therapeutic treatment

    Corrigendum to: The TianQin project: current progress on science and technology

    Get PDF
    In the originally published version, this manuscript included an error related to indicating the corresponding author within the author list. This has now been corrected online to reflect the fact that author Jun Luo is the corresponding author of the article

    Novel Insights into Pituitary Tumorigenesis: Genetic and Epigenetic Mechanisms.

    Get PDF
    Substantial advances have been made recently in the pathobiology of pituitary tumors. Similar to many other endocrine tumors, over the last few years we have recognized the role of germline and somatic mutations in a number of syndromic or nonsyndromic conditions with pituitary tumor predisposition. These include the identification of novel germline variants in patients with familial or simplex pituitary tumors and establishment of novel somatic variants identified through next generation sequencing. Advanced techniques have allowed the exploration of epigenetic mechanisms mediated through DNA methylation, histone modifications and noncoding RNAs, such as microRNA, long noncoding RNAs and circular RNAs. These mechanisms can influence tumor formation, growth, and invasion. While genetic and epigenetic mechanisms often disrupt similar pathways, such as cell cycle regulation, in pituitary tumors there is little overlap between genes altered by germline, somatic, and epigenetic mechanisms. The interplay between these complex mechanisms driving tumorigenesis are best studied in the emerging multiomics studies. Here, we summarize insights from the recent developments in the regulation of pituitary tumorigenesis
    corecore