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ABSTRACT 

 

Substantial advances have been made recently in the pathobiology of pituitary tumors. Similar to 

many other endocrine tumors, over the last few years we have recognized the role of germline and 

somatic mutations in a number of syndromic or non-syndromic conditions with pituitary tumor 

predisposition. These include the identification of novel germline variants in patients with familial or 

simplex pituitary tumors and establishment of novel somatic variants identified through next 

generation sequencing. Advanced techniques have allowed the exploration of epigenetic 

mechanisms mediated through DNA methylation, histone modifications and non-coding RNAs, such 

as microRNA, long noncoding RNAs and circular RNAs. These mechanisms can influence tumor 

formation, growth and invasion. While genetic and epigenetic mechanisms often disrupt similar 

pathways, such as cell cycle regulation, in pituitary tumors there is little overlap between genes 

altered by germline, somatic and epigenetic mechanisms. The interplay between these complex 

mechanisms driving tumorigenesis are best studied in the emerging multi-omics studies. Here, we 

summarize insights from the recent developments in the regulation of pituitary tumorigenesis. 

Keywords: pituitary neoplasm, pituitary tumorigenesis, pituitary adenoma, PitNET, pituitary 

tumor   
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List of abbreviations 

ACTH-PT Adrenocorticotropic hormone-secreting pituitary tumor 

circRNA circular RNA  

FIPA Familial isolated pituitary adenomas 

GH-PT Growth hormone-secreting pituitary tumor 

GT-PT Gonadotropin (FSH/LH)- secreting pituitary tumor 

Gαi Inhibitory Gα protein subunit 

HGVS Human Genome Variation Society 

lncRNA Long non-coding RNAs  

PitNET Pituitary neuroendocrine tumor 

PRL-PT Prolactin-secreting pituitary tumor 

PT Pituitary tumor 

SSA Somatostatin analogue 

TSH-PT Thyroid stimulating hormone-secreting pituitary tumor 

WES Whole exome sequencing  

WGS Whole genome sequencing 

XLAG X-linked acrogigantism  
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INTRODUCTION 

 

Pituitary tumors (PTs) are common intracranial neoplasms with an overall prevalence estimated at 

17% in a systematic review using post-mortem (14%) and radiologic studies (22%) (1). While the 

majority of these would represent incidentalomas and usually of little clinical significance, the 

prevalence of clinically-presenting adenomas is higher in epidemiological studies conducted over the 

last 10-15 years compared to older data, probably due to better diagnostic modalities, with 68-110 

PTs clinically-presenting cases identified per 100,000 inhabitants (2-8). Using incidence data from 

population-based state cancer registries in the United States, the age-adjusted annual incidence rate 

of PTs increases from 2.52 in 2004 to 3.13 in 2009 (per 100,000 subjects) (9). 

Tumors of the anterior pituitary usually do not metastasize, and hence have been referred to as 

“adenomas”. However, as a significant minority can show clinically aggressive behavior and similar 

characteristics to true metastasizing lesions (10), the term ‘pituitary neuroendocrine tumor’ or 

‘PitNET’ has been coined recently (11,12). Here we use the term pituitary tumor representing tumors 

arising from the potentially hormone-producing cells of the anterior pituitary. 

PTs are clinically categorized by their hormone-secreting characteristics, with over-secretion of GH, 

prolactin, ACTH, TSH and LH/FSH or clinically non-functioning tumors. Histological characterization 

has been based on immunohistochemical staining of pituitary hormones, with more recently 

transcription factors (PIT1 for GH, prolactin and TSH lineages, SF1 for gonadotroph lineages and TPIT 

for ACTH lineage) being added to the classification (13). Therefore, the final diagnosis relies on the 

combination of the clinical picture (excess hormone secreting or not) and histological assessment 

(hormone and transcription factor immunostaining (14)). Molecular characterization based on 

methylation patterns, gene expression and DNA mutations may add further granularity to the 

assessment of these tumors in the future (15).  
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Over the last decade, we have witnessed major advances in the biology of pituitary tumors, with the 

identification of several germline and somatic mutations and epigenetic mechanisms, such as DNA 

methylation, histone modifications and non-coding RNAs. In this review, genetic and epigenetic 

mechanisms contributing to pituitary tumorigenesis will be succinctly summarized with an emphasis 

on novel insights over the last ten years.  

 

1. GENETIC MECHANISMS OF TUMORIGENESIS 

 

1.1 Germline mutations driving tumorigenesis 

Pituitary tumors associated with germline mutations may present as part of a syndromic disease or 

in isolation (Figure 1, 2). The non-syndromic group consists of patients in whom no other organ than 

the pituitary is involved, and is known as familial isolated pituitary adenoma (FIPA) (16). We 

summarize here the key genetic aspects, while refer to other reviews on the detailed clinical 

characteristics of these diseases (17,18). 

 

1.1.1 Familial isolated pituitary adenoma (FIPA) 

The prevalence of FIPA among all PT patients was found to be 1.9-3.8% in pituitary referral centers 

(2,19). The first identified gene underlying FIPA is AIP (20), which accounts for 10-20% of FIPA 

kindreds (21,22). Duplication of GPR101 in X-linked acrogigantism (XLAG), although mostly identified 

as de novo mutation, has also been described in families (three kindreds described so far in the 

literature (23-26)). However, patients with a suggestive family history with no known genetic cause 

form the majority of patients in FIPA.  

1.1.1.1. AIP mutation-positive pituitary tumors 

The AIP gene maps to chromosome 11q13.2, incidentally close to the locus of the MEN1 gene, 

although there are no sequence similarities between the two genes. It encodes a ubiquitously 
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expressed co-chaperone protein with multiple partners, but currently its role in pituitary 

tumorigenesis is incompletely understood. It behaves as a tumor suppressor with a unique primarily 

somatotroph/lactotroph specificity, although global lack of AIP is lethal in mouse, Drosophila and C. 

elegans studies (27-29). The cAMP/protein kinase A/phosphodiesterase pathway plays a key role in 

somatotroph physiology and acromegaly-related genetic syndromes (Figure 3). Not surprisingly, 

therefore, a link has been found between this pathway and AIP at several levels: at the inhibitory 

Gαi-2 protein (30,31), at cAMP (32), at phosphodiesterase 4A (33-35), at protein kinase A (36,37), 

downstream of somatostatin receptors and Zac1 (38,39) levels. AIP has also found interact and 

inhibit the endoplasmatic reticulum calcium channel ryanodine receptor in C. elegans (29), another 

pathway closely linked with hormone release, with somatic variants identified in calcium-related 

pathways from somatotropinomas (40,41). Given the particular role of RET in somatotroph cells (42), 

the link with RET (43) could be a link to the specific role of AIP in somatotrophs. Increased GH 

release has been found in AIP-disrupted cells, probably associated with the increased STAT3 

phosphorylation (39,44), while an altered microenvironment may also explain the aggressive 

phenotype of some of these tumors (45). However, the role of other AIP partners – nuclear 

receptors (AHR, ER, GR, PPRα, TRβ1), mitochondrial proteins, survivin (reviewed in (46)) or BCL6 (47) 

in the pituitary-specific effects is unclear.  

Pituitary tumors are significantly more frequent in global heterozygous Aip+/- mice compared to wild-

type mice (48). The majority of the tumors developed were GH-PTs, which were negative for AIP 

immunostaining. This predisposition to developing GH-PTs in the heterozygous state with loss of 

expression of AIP in the tumor is similar to the human clinical phenotype. Interestingly, full 

penetrance is achieved in global heterozygous Aip+/- mice by 15 months in contrast to the 23% 

penetrance observed in a large, thoroughly screened family (49). The discrepancy between the 

mouse and human phenotype is likely to be due to genetic variability in humans. Supporting this 

hypothesis is that fact that, although using the same mouse line, phenotypic variability has been 

noted by another laboratory in the penetrance of pituitary tumors in global heterozygous Aip+/- 
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model with no pituitary tumors detected at 12 months of age (50), in contrast to Raitila et al. where 

pituitary tumor incidence was greater than 80% by 12 months. Homozygous somatotroph-specific 

knockout showed over 80% penetrance of GH-PTs by 10 months (51), with animals showing features 

similar to acromegaly (increased body size and elevated serum GH and insulin-like growth factor 1). 

High penetrance has also been observed in pituitary-specific Aip-knockout both in heterozygote and 

homozygote cases by 12-15 months (45,52). 

Patients with germline AIP mutations have a clinical phenotype that is distinct from sporadic tumors: 

they show earlier disease onset and are diagnosed at a younger age, are larger, and are 

predominantly sparsely-granulated GH-secreting tumors, locally invasive and develop apoplexy 

(21,22,33,53-55). These tumors are less likely to respond to first-generation somatostatin analogues 

(SSA) (33,53,56), while some cases have shown responses to second-generation SSA, pasireotide 

(57). 

Families with AIP mutations show an incomplete penetrance of around 15-30% (20,22,49,53). This 

probably explains why 50-70% of the identified AIP mutation positive kindreds do not have a known 

family history (simplex cases) (22,53), while de novo mutations (58) are exceedingly rare. Genetic 

screening can identify carrier family members, and clinical screening leads to a surprisingly high 

percentage of earlier recognition of clinically relevant disease (22).  

The prevalence of AIP mutations in patients with sporadic pituitary tumors varies significantly 

depending on age of disease onset, family history and tumor type (59). It is highest among patients 

with gigantism, 29%-41% (60,61), 12% in sporadic patients with age at diagnosis less than 30 years 

(62), and 3.6% of unselected population of a pituitary referral center (63). However, several studies 

found no pathogenic or likely pathogenic mutations in a cohort of 127 adult PT patients less than 40 

years at diagnosis (64), or in a group 50 of SSA-resistant adult patients with acromegaly (56). Current 

recommendations suggest screening for AIP mutations in patients with no syndromic features and 

any of the following criteria: i) childhood onset PT; ii) familial PT; or iii)  a macroadenoma at age 30 
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years or younger (16,65,66). 

 

1.1.1.2. X-linked acrogigantism (XLAG) 

XLAG is an extremely rare condition showing early-onset gigantism secondary to germline or somatic 

microduplication of the Xq26.3 chromosomal region containing the GPR101 gene (23).  

GPR101 is an orphan G-protein coupled receptor, with constitutive activity of the human protein. 

GPR101 is predicted to couple to the Gα stimulatory protein (67), which activates adenylyl cyclase 

and increases cAMP production. Indeed, culture of pituitary tissue of an XLAG patient showed 

increased GH and prolactin release (68), and heterologous in vitro overexpression of human GPR101 

leads to increased cAMP signaling in HEK293 cells (67) and GH3 cells (23). GPR101 is expressed in the 

normal human hypothalamus and in the embryonic and pubertal pituitary, but less in prepubertal 

and adult pituitary, suggesting a role in development and at the peak of growth (69). GPR101 is 

overexpressed in XLAG pituitary tumors, while expression in sporadic GH-PTs is low (23). The 

hypothalamic expression could explain the increased GHRH levels measured in some of the patients, 

and points to the role of hypothalamic dysregulation in this disease (68).  

Recently, a lipid mediator n-3 docosapentaenoic-derived resolvin D5 (7S,17S-dihydroxy-

8E,10Z,13Z,15E,19Z-docosapentaenoic acid, RvD5n-3 DPA) has been shown to activate GPR101, 

representing a potential endogenous ligand to  this previously orphan receptor (70). This bioactive 

lipid mediator enzymatically derived from essential fatty acid n-3 docosapentaenoic acid is a 

member of the specialized pro-resolving mediators. It plays a role in the regulation of leukocytes and 

macrophages, intestinal barrier protection and in joint inflammation. It is currently unknown 

whether this ligand has a role in the physiological regulation of the GH axis and how it behaves in 

patients with XLAG. A previously suggested putative ligand for GPR101 is GnRH-(1-5), a short 

fragment of GnRH. GnRH-(1-5) has been suggested to activate GPR101 to increase epidermal growth 

factor release and increase MMP-9 enzymatic activity in endometrial cancer cell lines, facilitating 
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cellular migration and leading to an increase in cellular invasion (71). Similar pro-proliferation and 

pro-invasive effects may underlie pituitary tumorigenesis in XLAG. 

 

The majority of the reported XLAG cases are sporadic (26 patients) due to de novo mutations, while 

three kindreds have been reported in the literature to date (23-26,61,68,72-74). The majority of the 

patients are females (24/33, 73%), with all female cases showing de novo germline duplication, 

making transmission to future generations possible (75). In males, XLAG is secondary to somatic 

mosaicism in simplex cases described so far (72,76), or to germline duplications inherited from an 

affected mother (full penetrance was seen in all three kindreds) (23-26). Two of 3 familial female 

patients described so far are mothers of affected sons and have de novo mutations; all four familial 

male patients are affected sons who have inherited the duplication from their mothers (23-26). It is 

unclear why de novo germline mutations have not so far been described in males.  

Patients with XLAG have a distinct clinical phenotype with the onset of symptoms and diagnosis in 

early childhood (23,61). Clinical presentation in most cases is due to accelerated growth velocity in 

infancy or early childhood (<5 years of age; most commonly during the first 2 years of life) (61) with 

acromegaly-type features such as acral enlargement and coarse facial features, signs which are often 

not seen in patients with other types of childhood-onset acromegaly (26). The majority (~80%) of the 

patients present with a GH and prolactin-secreting macroadenoma (23,61). Some of the patients 

have a normal-sized pituitary gland or diffusely enlarged histologically-proven pituitary hyperplasia 

(61,72,77), despite very high levels of GH and IGF-1, with or without prolactin elevation. A prenatally 

diagnosed familial XLAG case showed a pituitary tumor on MRI already at 3 weeks of age, associated 

with high prolactin and growth hormone (24,25). Given the full penetrance observed so far in 

familial XLAG, preimplantation diagnosis or prenatal screening is worth considering in affected 

mothers, and theoretically in female fetuses of affected males (although male-to-female 

transmission has not yet been demonstrated). Histological features show mixed GH-PRL tumors with 
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a mixed sparsely and densely granulated pattern (25,26,61,73). No other PT type has been 

associated with GPR101 duplications (78). Missense variants of GPR101 do not seem to be 

associated with PTs (61,79,80).  
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1.1.1.3 Novel germline variants  

Comprehensive reviews of clinical and genetic aspects of germline syndromes are available elsewhere: here we briefly summarize here the more recent 

developments (Figure 1).  

The vast majority of FIPA does not have an established genetic basis: approximately 85% of the FIPA cohort were negative for AIP mutations in one study 

(21). Consequently, there has been significant interest in identifying other germline variants, which may predispose to familial tumors (Table 1), but none of 

the published data convincingly supports the established presence of a further gene causing FIPA.  

Four heterozygous germline missense variants were identified in CABLES1 in four sporadic patients from a cohort of 182 patients with ACTH-PTs with 

functional evidence of loss of function for some of them (Table 1). No familial cases have been reported to date (81).   

While loss of the Prlr leads to large pituitary tumors in mice, homozygous loss-of-function PRLR mutation in a human patient with hyperprolactinemia and 

agalactia had no pituitary tumor (82). On the contrary, a gain-of-function variant was identified in 9 out of 46 patients with PRL-PTs, representing a possible 

novel mechanism for prolactinoma tumorigenesis. In addition, 3 other rare and 2 low-frequency variants found in this cohort may represent benign changes 

(83). Further data are needed to confirm these findings. Furthermore, no loss or gain-of-function mutations could be identified in a cohort of young 88 patients 

with PRL-PTs (84) or in a cohort of 16 PRL-PT (15). 

There are some further reports of germline variants in patients with pituitary tumors but without functional elucidation to define pathogenicity or mechanisms. 

Investigation into a family with isolated PRL-PTs (3 affected siblings) with whole exome sequencing showed novel, germline, potentially pathogenic variants in 

RXRG and TH  (85), the latter of which may be relevant  as it encodes tyrosine hydroxylase which mediates the rate-limiting step in the formation of 

dopamine which, in turn, negatively regulates prolactin secretion in the pituitary. Further cases or functional studies will strengthen this report. 

Using whole exome sequencing, a study of 12 FIPA families identified four families with germline variants in CDH23, which were predicted to be pathogenic 

using in silico analysis. Tumors of these patients showed a reduced frequency of cavernous sinus invasion, compared to the rest of the familial patients. The 

identified variants were predicted to be loss-of-function changes and occurred in conserved motifs, suggestive for impaired protein function, although CDH23 
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is a large gene and therefore is, in general, more likely to harbor sequence variants. Homozygous mutations in CDH23 result in Usher syndrome, 

characterized by congenital sensorineural hearing loss, vestibular dysfunction and early-onset retinitis pigmentosa (86). Pituitary tumors have not been 

described in association with any of these problems (87). This study also describes 2 (out of 125) sporadic pituitary tumor patients with homozygous CDH23 

variants (88), but it is not specified whether these individuals showed clinical manifestations of Usher syndrome. 

Interestingly, a recently-described syndrome, X-linked IGSF1 deficiency characterized by central hypothyroidism, macro-orchidism (89) and prolactin 

deficiency (90), can be associated with acromegaloid facial features, increased head circumference and increased total GH secretion and IGF-1 levels (91). 

Given that patients show hyperplasia rather than adenomas, this may be secondary to a failure of regulatory and feedback mechanisms. A germline variant 

in IGSF1 was identified in three family members with gigantism (due to somatomammotroph hyperplasia, rather than adenoma) (92). No effect of the 

variant on protein expression, maturation, stability, or membrane trafficking was observed. The authors speculate that, given the prediction that the 

modified residue changes the surface charge in the 6th immunoglobulin loop, this may alter IGSF1’s interaction with an extracellular partner, although this 

variant is reasonably common in the general population (minor allele frequency is 0.009, Table 2). 

 

1.1.2 Syndromes associated with pituitary tumors 

 

In addition to the previously well-described syndromes with multiple tumor types where pituitary tumors represent one of the possible manifestations, 

several novel syndromes have been described over the last few years (Figure 2). The MEN1 syndrome is due to germline loss-of-function mutations of the 

MEN1 gene. Ten percent of the cases could be de novo mutations, sometimes identified as mosaicism in the proband (93-95).  
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An MEN1-like clinical picture can be seen in MEN4 syndrome due to mutation in cyclin dependent kinase inhibitors, primarily p27 (CDKN1B) and rarely in 

p21 (CDKN1A), p15 (CDKN2B) and p18 (CDKN2C) (96,97). 

In Carney complex, in addition to loss-of-function mutations in the regulatory protein kinase A subunit PRKAR1A, gain-of-function has been described in the 

catalytic protein kinase A subunit PRKACB (98). The disease-causing gene associated to the 2p16 locus in Carney complex cases is unknown.  

While pituitary tumors and pheochromocytoma are rarely seen in MEN1 syndrome, the constellation of paraganglioma, pheochromocytoma and pituitary 

tumor (‘3P’ association) is now increasingly recognized in patients with SDHx mutations (99,100) with a characteristic histological phenotype (99) and 

pituitary adenomas developing in a Sdhb-knockout mouse model (101). MAX mutations have been identified in 5 patients with pituitary tumor and 

pheochromocytoma (102-104). While loss-of-heterozygosity has not been shown yet, further data are needed to confirm a causal relationship between 

MAX mutations and pituitary tumors.  

Corticotroph tumors have been recently identified in three tumor syndromes.  DICER1 syndrome (loss-of-of-function DICER1 mutations) has shown 

infantile-onset large pituitary blastoma in a few patients (105). Germline mutations in the mismatch repair pathway (MLH1, PMS2, MSH2, MSH6) lead to 

Lynch syndrome, an autosomal dominant inherited cancer syndrome associated with colorectal, endometrial, ovarian and other carcinomas. Germline 

mutations in MLH1 (106) and MSH2 (107) have been identified in patients with aggressively growing ACTH-secreting tumors. While somatic variants were 

found in a single non-functioning tumor in 4 mismatch-related genes (108), microsatellite instability was not found in 107 sporadic pituitary tumor samples 

(109). Germline USP8 mutations, commonly seen as somatic mutations in corticotroph adenomas (see below), have now also been described in a child with 
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dysmorphic features, developmental delay and a corticotroph tumor (110), with a second similar case now under workup (Stratakis, NIH, personal 

communication).  

Rarely, optic pathway gliomas cause high GH levels in neurofibromatosis type 1 (NF1), while true pituitary adenomas are extremely rare. Pituitary tumors 

have been reported in patients with tuberous sclerosis (111-114). It is currently unclear if these are indeed related to the TSC1 or TSC2 mutations or are 

coincidental findings.  

 

1.2 Somatic mutations driving tumorigenesis 

The most common recurrent somatic mutations occur in GNAS in somatotroph tumors, and in USP8 in corticotroph tumors. Other somatic changes 

suggested to be associated with pituitary tumors include: PIK3CA amplification (115,116), IDH1 mutations (117,118), TP53 in pituitary carcinomas (119) and 

ACTH-PTs (120),  and HMGA2 amplification in PRL-PTs (121-123). HRAS mutations have been seen in pituitary carcinoma (124), while the report of complex 

1 mitochondrial mutations in oncocytomas (125) await confirmation. A somatic frameshift mutation in the glucocorticoid receptor gene (NR3C1) resulting in 

premature termination of the coding sequence has been described in a patient with Nelson’s syndrome, which may contribute to tumor development by 

reducing glucocorticoid feedback on tumor cells (126). No coding region NR3C1 mutation was found in 18 ACTH-PTs using Sanger sequencing (127), or in 18 

USP8 mutation-negative PTs using exome sequencing (120).  A single patient with a de novo missense germline NR3C1 mutation associated with an ACTH-

PA has also been described (126), while a child with corticotroph adenoma and partial glucocorticoid resistance had no detectable NR3C1 mutation (128).  

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/advance-article-abstract/doi/10.1210/endrev/bnaa006/5810899 by guest on 31 M

arch 2020



Acc
ep

te
d 

M
an

us
cr

ipt
  

 15 

Variants discovered recently through next generation sequencing-based approaches are also discussed below. 
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1.2.1 GNAS 

GNAS encodes the stimulatory α subunit of G-proteins and shows the most frequent somatic mutations in GH-PTs, more recently confirmed through whole 

genome (WGS) (40) and whole exome sequencing (WES) (15,108,129,130). Mutations affect codon 201 or 227, disrupting the GTPase activity of the protein 

(131) and leading to prolonged adenylyl cyclase activity and increased cAMP levels, driving tumorigenesis (Figure 3). GNAS-mutated tumors are smaller 

(132-136), less likely to be locally invasive (136) and more likely to respond to SSAs (136,137), although a Brazilian cohort showed no differences in tumor 

extension or response to SSAs between mutated and non-mutated tumors (138). Dopamine receptor 2 expression is increased in GNAS-mutated tumors, 

potentially allowing for GNAS mutation status in predicting response to dopamine agonists in GH-PTs (15). Recently, DNA methylation-activated inhibitory 

Gα (Gαi) -signaling was found in GNAS-mutation-positive GH-PTs (139). Patients with somatic mosaicism for codon 201 GNAS develop McCune-Albright 

syndrome, characterized by somato- or somatomammotroph hyperplasia or tumor, polyostotic fibrous dysplasia, cafe-au-lait spots, and precocious puberty 

(140). 

 

1.2.2 USP8 and USP48 

Gain-of-function mutations in the deubiquitinase enzymes USP8 and USP48 are associated with ACTH-PTs (108,120,129,141-148). USP8 mutations disrupt 

the interaction between USP8 and 14-3-3 protein, thereby allowing USP8 cleavage and increased enzymatic activity (141-143); this protects EGFR from 

lysosomal degradation, which leads to increased expression of EGFR (141-143) (Figure 4) and pro-opiomelanocortin (POMC) (141,146). Inhibition of USP8 

leads to increased degradation of EGFR with suppresses corticotroph cell growth and ACTH secretion in vitro (149). Lapatinib, an EGFR inhibitor, decreases 

proliferation in vitro and reduces tumor weight in vivo (150). A recent meta-analysis showed an overall prevalence of 32% of USP8 mutations in ACTH-PTs 

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/advance-article-abstract/doi/10.1210/endrev/bnaa006/5810899 by guest on 31 M

arch 2020



Acc
ep

te
d 

M
an

us
cr

ipt
  

 17 

with a higher prevalence in females (151). USP8-mutated tumors are associated with an earlier onset (143,152), smaller size (141) and increased ACTH 

production (141,152). In patients who showed biochemical remission after surgery, the incidence of recurrence in a 10-year follow-up was higher in 

patients with USP8 mutant tumors (152). In pediatric patients with Cushing’s disease, all recurrences after initial remission (in five patients) occurred in 

tumors with USP8 mutations (153). When remission status was investigated, the remission rates were higher in patients with USP8-mutated-alleles, 

although no recurrence was detected for at least 6 months after surgery (151). These data suggest that patients with USP8-mutated-tumors may be more 

likely to go into initial remission post-surgery but may also more likely to show recurrence later in the clinical course. USP8-mutation-negative tumors are 

more likely to show sphenoid invasion with an increased epithelial-mesenchymal-transition signature (15). Recently, SSTR5 expression has been shown to 

be higher in USP8-mutated tumors (15,146), potentially allowing the mutation status to be used as a predictor of response to pasireotide (a second 

generation SSA with greater affinity for SSTR5 (154)). In vitro studies found increased expression of pCREB and protein kinase A Cα on immunoblotting in 

AtT20 cells transfected with mutant USP8 (147). 

Activating USP48 mutations were found in 10-20% of ACTH-PTs (28,120). USP48 variants are associated with smaller tumors and better response to 

corticotropin releasing hormone (CRH) stimulation (120). Interestingly, both USP8 and USP48 have targets in the hedgehog signaling pathway: Smoothened 

for USP8 (155) and GLI1 for USP48 (120), suggesting that upregulation of this pathway may play a role in corticotroph mutagenesis (Figure 4).  

 

1.2.3 Novel Somatic Variants 
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Analysis of whole exome and whole genome sequencing data from pituitary tumors has revealed a low number of somatic mutations per tumor across all 

subtypes (108,129,130). This is consistent with their generally low proliferation rate. Only a handful of genes show recurrent mutations (108,156). Such 

recurrently mutated genes are reported in more detail in Table 3 
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 1 

Table 3. Identifying somatic variants in circulating free DNA has been attempted recently (157), and 2 

may develop into a useful method to follow patients with pituitary tumors. 3 

Novel sequencing approaches have provided an opportunity to develop interesting insights into 

pituitary tumorigenesis: 

1. Novel candidate genes may point towards dysregulated pathways in tumorigenesis: 

The first genome-wide association study of sporadic pituitary tumors identified new 

candidates (158): CDK8 (cell cycle regulation) and NEBL and PCDH15 (cell-cell adhesion). 

CDK8 is an oncogene in colorectal (159) and gastric carcinoma (160) with differentially 

expressed genes from animal PRL-PT models showing enrichment for CDK8 targets (161). 

Targeted mutation profiling of canonical cancer-associated genes has identified recurrently 

mutated genes, with three main pathways implicated in tumorigenesis in one study: cell cycle 

regulation and growth, chromatin modification and transcriptional regulation and DNA damage 

response (130). 

2. Subtype-specific mechanisms can be unveiled through WES and WGS studies 

focusing on tumor subgroups (Table 4): WES and WGS studies on GH-PTs have identified 

dysregulation of multiple signaling pathways as potential tumorigenic mechanisms, although 

they need to be characterized further using functional studies. Mutations in different genes 

can affect the same pathways and mediate tumorigenesis. For example, based several genes 

involved in cAMP signaling were found to have somatic variants in 14 of 36 somatotroph 

tumors, including G-protein-coupled receptors CCR10 and OR51B4, which were suggested to 

increase cAMP signaling similar to classical GNAS mutations (41). 
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3. Pathways mediating aggressive behaviors such as local invasion (irrespective of subgroups) 

can be identified for further functional characterization: WES comparing invasive and non-

invasive NFPTs and PRL-secreting tumors identified fifteen variants, which were mainly 

associated with processes involved in the regulation of invasion such as angiogenesis and 

cytoskeleton organization (162). ACTH-PTs with disrupted genomes and chromosomal 

instability are more likely to show cavernous sinus invasion (163). 

4. Whole exome/genome sequencing studies can be used to identify copy number alterations 

and degree of chromosomal instability, which can provide further insights into subtype-

specific tumorigenesis. Two distinct subgroups of pituitary tumors with low and high fractions 

of genomic disruption have been identified. The percentage of genome disruption used to 

define these two subgroups varies across studies (WES: (15,108,129,156,163), array-CGH 

(164)). Tumors with high genome disruption are enriched for hormone-secreting tumors, 

suggesting differing mechanisms of tumorigenesis between functioning and non-functioning 

tumors (15,156). Chromosomal instability is not related to aggressiveness (15). GH-PTs show 

greater genomic disruption than ACTH-PTs as well as inactive tumors with no clinical 

evidence of hormone secretion (108). Subgroups of GNAS-mutation negative GH-secreting 

tumors show high levels of genomic instability (139) with 20q amplification (GNAS locus) 

(15,130,164), which may be an alternative mechanism of increased signaling through GNAS 

driving somatotroph tumorigenesis. GH-PTs with recurrent aneuploidy showed high 

expression of pituitary tumor transforming gene 1 (PTTG1), which is a regulator of sister 

chromatid segregation, this may subsequently drive chromosomal instability (139,165,166). 

5. Next generation sequencing approaches can also be used in sequencing extrachromosomal 

DNA and identifying their role in tumorigenesis: tumors with the highest number of 

mitochondrial variants show the highest Ki-67 indices, irrespective of tumor subtype (167), 

indicating a role for the mitochondrial genome in modulating tumor biology.  
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2. EPIGENETIC MECHANISMS OF TUMORIGENESIS 

 

While germline and somatic genetic alterations have provided interesting insights into pituitary 

tumorigenesis, still the majority of pituitary tumors are sporadic with no known somatic driver 

mutations. Epigenetic changes are heritable phenotypic changes, which do not alter the DNA 

sequence. These can regulate transcription and/or translation. Epigenetic mechanisms may occur at 

the chromatin level, such as DNA methylation and histone modification, or at the RNA level, mainly 

mediated by non-coding RNAs, such as microRNAs, long non-coding RNAs (lncRNA), circular RNA 

(circRNA) and others. Such mechanisms affect gene expression and, consequently, tumorigenesis, 

and have assumed great significance, especially given the paucity of somatic mutations. 

 

2.1 DNA methylation 

Recently, it has been shown that PIT-1 lineage tumors (GH-, PRL- and TSH-PTs) show global 

hypomethylation and cluster as a group with hypomethylation, chromosome alterations and 

transposable element overexpression (15), suggesting that DNA hypomethylation may induce 

chromosomal instability through upregulation of transposable elements. GNAS-mutation positive 

GH-PTs also showed hypomethylation but with limited chromosomal alterations (15); GNAS-

mutation positive tumors are associated with low levels of copy number alterations, as mentioned 

above. 

Promoter methylation can prevent access to transcriptional machinery, leading to decreased 

expression. A systematic review of genes implicated in epigenetic dysfunction in pituitary tumors 

identified 16 tumor suppressor genes that underwent silencing secondary to methylation, of which 

11 mediate apoptosis and cell cycle progression (168). These genes included CDKN2A and RB1 

(169,170):  
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i) Methylation of CpG islands in CDKN2A is seen in up to 90% of sporadic pituitary tumors 

(168,169,171-173) with loss of expression of p16 on immunohistochemistry (171,172),  

ii) Methylation of CpG islands in the RB1 promoter in sporadic tumors (169,173) is 

significantly associated with loss of expression on immunohistochemistry (174), 

iii) Transgenic mice with a disrupted Rb1 allele develop pituitary tumors (175). 

The systematic review also identified aberrant methylation in more than 50% of tumors in GADD45γ, 

CASP-8, PTAG and FGFR2 (168). GADD45γ, CASP8 and PTAG are involved in apoptosis modulation, 

while FGFR2 is a growth factor receptor. Growth factors and growth factors receptors can also be 

over-expressed in pituitary tumors (176,177).  

The epigenome may be modified by the de novo methyltransferases DNMT3A and DNMT3B. 

DNMT3A and DNMT3B is overexpressed in pituitary tumors (178,179) and frequently detected in 

invasive tumors (178). Reducing the expression of DNMT3B was associated with increased levels of 

hypo-phosphorylated Rb, p21 and p27 proteins and reduced proliferation (179), suggesting that 

increased expression DNMT3B may mediate proliferation through promoter hypermethylation and 

silencing of tumor suppressor genes. 

Gene imprinting is a process in which transcription of one allele is repressed through methylation, 

depending on the parent of origin. Relaxation of imprinting through loss of methylation can lead to 

increased transcription, such as in GNAS-mediated tumorigenesis (180). Imprinted genes such as 

MEG3 (discussed later) have only one transcriptionally-active copy, rendering them especially 

susceptible to inactivation through mutation or increased promoter methylation. 

DNA methylation is associated with clinical characteristics, such as: 

i) Tumor subtype: Microarray profiles differentiate between functioning tumors (including 

hormone subtypes) and NFPTs (108,181-184) with GH-PTs divided into sparsely and two 

densely granulated groups (182).  

ii) Local invasion: While one study has shown distinct microarray profiles between invasive 

and non-invasive non-functioning tumors (185), others have shown no significant 
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differences, both when only NFPTs were used (186) or with a diverse group of functioning 

and non-functioning tumors (183). Interestingly, differentially methylated genes were 

enriched for cell adhesion pathways (185). Decreased LAMA2 (187) and WIF1 (188) 

expression (RT-qPCR and immunoblotting) with increased promoter methylation is seen 

in invasive NFPTs (187). LAMA2 over-expression in a xenograft model significantly 

suppressed tumor growth (187). Greater promoter methylation of ESR1 and RASSF1 is 

seen in non-invasive compared to invasive tumors (184).  

iii) Tumor size: CDKN2A methylation and reduced expression of p16 are significantly 

related to larger tumor size (171,172). Macroadenomas show a greater frequency of 

promoter methylation of MSH6 and CADM1 than microadenomas (184). 

iv) Disease progression: TERT encodes a component of telomerase, which lengthens the 

telomere, mediates cell immortalization and is a well-recognized oncogene. Aberrant 

TERT promoter methylation is associated with TERT upregulation in malignancies (189-

191) and shorter progression-free survival and tumor recurrence (192) in pituitary tumors. 

v) Implications for therapy: MGMT promoter methylation and consequent low expression 

are noted in a subset of pituitary tumors (193,194). Temozolomide is currently used in the 

management of pituitary carcinomas and aggressive pituitary tumors (defined clinically as 

tumors that recur despite various treatment modalities such as surgery, radiotherapy and 

pharmacological therapy (195-197)). Immunohistochemistry to assess MGMT expression 

has been recommended prior to commencing temozolomide as high expression is 

associated with a lack of response, although the methodologies are not standardized and 

most clinicians would not use the result to discard temozolomide therapy (196,197). Loss 

of MSH2 and MSH6 has also been linked to developing rapid resistance to temozolomide 

(198). Patients with somatotropinomas and GSTP1 promoter methylation are more 

resistant to SSAs (199).  
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2.2 Histone modification 

Acetylation, methylation and citrullination of histone tails are associated with active and inactive 

regions of the genome respectively. These epigenetic marks can be modified by chromatin 

regulators such as histone acetyltransferases, histone deacetylases, histone methyltransferases and 

citrullination enzymes.  

Several studies suggest that changes in histone acetylation play a crucial role in pituitary 

tumorigenesis: 

i) Tumor-specific ikaros isoform Ik6 promotes pituitary cell survival through enhanced anti-

apoptotic activity by up-regulation of Bcl-XL through promoter histone acetylation (200). 

ii) Expression of bone morphogenetic protein 4, which is a growth factor known to drive 

pituitary tumorigenesis (176), is controlled through histone acetylation and methylation 

(201). 

iii) Tumor subtype-specific changes: sirtuins are conserved histone deacetylases, which 

show differences in expression profiles in pituitary tumors based on size and hormone-

secreting subtype (202). Histone deacetylase-2 deficiency is seen in glucocorticoid-

resistant ACTH-PTs (203), with histone deacetylase-11 mediating decreased p53 

expression in corticotroph AtT-20 cells (204). Inhibition of histone deacetylase activity 

reduces survival and ACTH secretion in corticotroph cells (205). 

iv) Aggressive behavior: Histone acetyltransferases p300 upregulates human pituitary tumor 

transforming gene (hPTTG) (206). PTTG is a growth factor with a well-established role in 

carcinogenesis and invasion, partly regulated through the c-myc pathway (207). A meta-

analysis has confirmed increased PTTG expression in invasive pituitary tumors (208) (this 

has also been replicated in NFPTs (209)). Pituitary tumors show a global increase in 

H3K9 acetylation compared to normal pituitary, with increased acetylation seen in tumors 

with increased Ki-67 index (210). 

Histone methylation and citrullination (conversion of arginine to citrulline catalyzed by 

peptidylarginine deiminase enzymes) may also mediate tumorigenesis. Enhanced H3K27 methylation 

and reduced H3K4/H3K9 methylation are found in tumors with increased RIZ1 expression (which is 
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thought to be a histone methyltransferase), which also correlates with longer progression-free 

survival (211). Non-invasive tumors also show significantly increased RIZ1 expression compared to 

invasive tumors (211). Citrullination of histone H3 in GH3 cells represses the expression of specific 

tumor suppressor microRNAs, which leads to increased expression of known drivers such as N-MYC, 

and IGF-1 and increased proliferation (212).  

 

2.3 MicroRNAs 

These are short non-coding RNAs that mediate post-transcriptional regulation of gene expression 

through RNA interference and mRNA destabilization. The role of microRNAs in pituitary 

tumorigenesis has been extensively reviewed elsewhere (213-215). The recent advances (mainly 

from the last five years) with novel insights into tumorigenesis are summarized in Table 5. 
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2.4 Other non-coding RNAs  

These include long non-coding RNA (lncRNA) (200nt to ~100 kilobases long with no open reading 

frames (216)) and circular RNA (generated from exons of protein-coding genes and lacking a 5' cap 

or 3' poly (A) tail (217)). LncRNA and circRNAs have various functions, such as regulation of gene 

transcription and depletion of microRNA (‘microRNA sponge’). Their up- or downregulation can 

result in tumorigenesis (217). Many lncRNAs are imprinted, allowing for dysregulation of imprinting 

resulting in abnormal function (216) (see above).  

H19 expression is downregulated in pituitary tumors compared to normal pituitary (218) and H19 

suppresses proliferation in vitro and in vivo (219) by inhibiting mTORC1 (218). CCAT2 is significantly 

upregulated in pituitary tumors with elevated expression correlating with poor prognosis (220). 

CCAT2 enhances proliferation in HP75 cells by suppressing PTTG1 degradation (220). IFNG-AS1 

expression is greater in pituitary tumors with increased proliferation noted in HP75 cells on over-

expression, probably mediated through ESRP2 (221). AFAP1-AS1 expression is also increased in 

pituitary tumors (222) and promotes proliferation by acting as a competing endogenous RNA of miR-

103a-3p leading to activation of the PI3K/AKT pathway (223). 

LncRNAs may drive subtype differentiation: 

a) Genome-wide analysis of lncRNAs identified 839 differentially-expressed lncRNAs in GT-PTs 

compared to normal pituitary (224). Similar analysis in NFPTs identified 113 lncRNAs (225). 

b) RPSAP52 expression is highly upregulated in GT-PTs and PRL-PTs, where it increases 

HMGA2 levels, compared with normal pituitary tissues (226). This relationship is not seen in 

GH-PTs. 

c) LncRNA clarin 1 antisense RNA 1 (CLRN1-AS1) is downregulated in PRL-PTs therefore 

relieving inhibition from the Wnt/β-catenin pathway (227). 

d) Overexpression of a subgroup of long non-coding RNAs, termed “highly up-regulated in liver 

cancer” (HULC), promoted GH3 cell viability, migration, invasion and PRL and GH secretion 

with knockdown inducing apoptosis (228). 
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LncRNAs may also drive tumor invasion: 

a) MEG3: This is imprinted lncRNA, which is downregulated in NFPTs (229,230). Loss of 

expression is not seen in other tumor subtypes (231,232). Promoter hypermethylation 

mediates loss of expression (233). Ectopic expression inhibits growth in human cancer cell 

lines (229). MEG3 causes cell cycle arrest at the G1 phase with p53-dependent (234) and 

p53-independent (235) mechanisms. MEG3 expression is significantly reduced in invasive 

compared to non-invasive NFPTs (236). 

b) HOTAIR: Expression is significantly higher in NFPTs compared to normal pituitary and in 

invasive compared to non-invasive NFPTs (236). HOTAIR interacts with the Polycomb 

Repressive Complex 2 (PRC2) (237,238) and promotes invasion in pancreatic (239) and non-

small cell lung cancer (240). 

c) Lnc-SNHG1: Overexpression is seen in invasive pituitary tumors. Lnc-SNHG1 interacts with 

and decreases the activity of miR-302/372/373/520 in vitro, activating the TGFBR2/SMAD3 

and RAB11A/Wnt/β-Catenin (241). 

d) C5orf66-AS1: Its expression is decreased in invasive null cell adenomas compared to non-

invasive tumors (242) 

e) XIST:  XIST and bFGF exhibited high expression while miR-424-5p showed low expression in 

invasive compared to non-invasive pituitary tumor tissue. XIST was found to up-regulate 

bFGF expression by competitively binding to miR-424-5p (243): bFGF (basic fibroblast growth 

factor) acts as a growth factor and can also promote angiogenesis. 

Interestingly, multiple studies have shown a role for circRNAs in tumor progression in NFPTs. As 

discussed previously, miR-145-5p induces apoptosis in NFPTs; circOMA1 can promote tumor 

progression by sponging this microRNA (244). Differential circRNA expression profiles of invasive and 

non-invasive NFPTs have been shown (245,246), with gene enrichment for cell adhesion and 

PI3K/AKT pathways (245). Ten circRNAs are upregulated in recurrent compared to primary tumors 

(245). In fact, a signature of two circRNAs (hsa_circ_0000066 and hsa_circ_0069707) is suggested to 

predict tumor recurrence in NFPTs (247). 
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2.5 Global gene expression profiles 

Novel sequencing and array-based approaches have allowed for:  

a) Identification of distinct profiles in subtypes: Using RNA sequencing, six distinct transcriptomic 

profiles have been identified which match the WHO 2017 tumor classification (15) with the 

following discrepancies: i) Null cell subtype matches GT-PTs; ii) Silent and secreting ACTH-

PTs show distinct profiles: iii) Mixed GH-PRL tumors cluster with GH-PTs, rather than PRL-

PTs; and iv) Sparsely granulated GH-PTs cluster with thyrotroph and plurihormonal PIT1-

positive tumors rather than GH-PTs.  

Distinct tumor type-specific profiles were shown in earlier studies as well: GT-PTs (224,248-

250), ACTH-PTs (108,251-253), GH-PTs (108,254), PRL-PTs (255,256) and NFPTs 

(108,257,258). Insights from such studies include a confirmation of the importance of 

deregulation of the cell cycle in pituitary tumorigenesis across subtypes 

(15,249,250,254,257,259), deregulation of the mTOR signaling pathway in GT-PTs (224) and 

alterations in the Notch pathways in PRL-PTs (255) and NFPTs (258). A subtype of NFPTs 

may actively suppress the immune system, raising the possibility of immunotherapy in 

treatment (260). Integration of microarray datasets has also been used to identify immune-

related genes and further explore this possibility (261). Recently, evaluation of splicing 

machinery components in GH-PTs, ACTH-PTs and PRL-PTs showed severe dysregulation in 

all subtypes compared to normal (262).  

b) In a subgroup of tumors from patients with acromegaly, ectopic GIPR overexpression was 

associated with a paradoxical increase in GH after an oral glucose tolerance test (263,264). 

These GIPR-expressing somatotropinomas are negative for GNAS mutations (263,265). An 

overall hyper-methylator phenotype was identified in GIPR-expressing samples (compared 

with GNAS-mutated tumors), which also showed hypermethylation in the GIPR gene body, 

potentially driving ectopic expression (263). This represents a novel tumorigenic mechanism, 

similar to the well-described ectopic receptor induced adrenal tumors. 

c) A study on invasive pituitary tumors identified that the TNFα network ‒ including genes coding 

for proteins (TNFα, CCL3, CXCL12, and CCL2), microRNAs (miR-181c-5p and miR-454-3p) 

and lncRNAs (NR_033258 and lncRNA_SNHG24) ‒ is upregulated in bone-invasive pituitary 
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adenomas compared non-bone-invasive counterparts, suggesting that targeting the TNFα 

pathway may be beneficial for these invasive tumors (266). 

 

2.6 Proteomics  

Novel techniques such as nanoscale liquid chromatography coupled to tandem mass spectrometry 

(nano LC-MS/MS) have been used recently (267) in determining proteomic profiles. Integration of 

such techniques with transcriptomics has allowed for identification of invasion-related biomarkers 

(268) and pathways (269) in NFPTs. This technique has even allowed for the identification of novel 

sites of phosphorylation in GH-PTs (267) with enrichment of differentially-expressed phosphorylated 

proteins for glycolysis and AMPK signaling. High-performance liquid chromatography coupled to 

mass spectrometry has been used to identify differentially-expressed molecules in fibroblasts 

isolated from bone-destructive NFPTs (270) (with significant upregulation of osteopontin, which can 

stimulate cell migration and invasion (271)). The first study to investigate protein ubiquitination 

profiling in pituitary tumors compared to normal pituitary showed enrichment for the PI3K/AKT 

signaling pathway in NFPTs (272). 

High-resolution Fourier transform mass spectrometry is another promising novel technique which 

has identified 105 novel proteins in the normal anterior pituitary compared with previous high-

throughput proteomic-based studies (273). Using this approach may also identify new candidate 

proteins and/or pathways driving pituitary tumorigenesis. Previously used techniques in proteome 

profiling of pituitary tumors include two-dimensional gel electrophoresis-based comparative 

proteomics (255,258,274,275) and protein immunoblot array analysis (276). 
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OTHER FACTORS INFLUENCING PITUITARY TUMORIGENESIS  

In this review we have concentrated on the novel genetic changes in pituitary adenomas. We refer 

to data on other important aspects of pituitary tumorigenesis, such as the role of senescence 

(277,278), cytokines (45,279) or tumor-associated fibroblasts (280,281) in establishing the clinical 

phenotype of tumors, is an emerging focus of research interest (282).  

 

CONCLUSIONS 

Novel mechanisms of pituitary tumorigenesis have been identified in recent years, both pertaining 

to germline mutations underlying familial tumors and somatic mutations and epigenetic changes 

driving sporadic tumors. Epigenetic modifications have become increasingly important in 

understanding tumorigenesis, as most pituitary tumors are sporadic with no known genetic driver 

mutations (with the exception of a significant proportion of GH-PTs and ACTH-PTs with GNAS and 

USP8 mutations respectively). While novel somatic variants have been identified through whole 

genome and exome sequencing, their role in driving sporadic tumors remains to be established 

through further functional studies. Epigenetic changes at the chromatin (pre-transcription) and RNA 

levels (post-transcription) are especially crucial in determining clinical characteristics such as subtype 

differentiation and local invasion (occasionally through epigenetic mechanisms specific to subtype). 

Indeed, a novel recent multi-omic classification system using somatic mutations, chromosomal 

alterations and the miRNome, methylome, and transcriptome has shown the PIT1 lineage to be the 

main separator driving distinct group classification (15). Such integrated approaches to these genetic 

and epigenetic mechanisms will permit identification of molecular mechanisms of tumorigenesis 

common across different subtypes, as well as specific to tumor subtype, allowing for the 

development of novel therapeutic strategies. 
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FIGURE LEGENDS 

 

Figure 1 Genetic and epigenetic mechanisms of pituitary tumorigenesis 

Genetic mechanisms may be secondary to germline or somatic mutations, while epigenetic 

mechanisms can be mediated at the chromatin level (such as in the case of DNA methylation or 

histone modifications) or via non-coding RNAs. 

 

Figure 2 Germline or mosaic mutations causing pituitary tumors 

Pituitary tumors presenting in isolation (familial isolated pituitary adenoma, FIPA) or part of a tumor 

syndrome. Hyperplasia has been described in Carney complex and McCune-Albright syndrome, in 

20% of XLAG cases and rarely in AIP mutation positive cases.  

Genes marked with red letter types are oncogenes, while the black ones are tumor suppressor 

genes.  

G, germline; S, somatic; M, mosaic; HPGL, hereditary paraganglioma, LCCSCT, large-cell calcifying 

Sertoli cell tumors, pHPT, primary hyperparathyroidism, PPB, pleuropulmonary blastoma, SLCT, 

Sertoli–Leydig cell tumor. 

 

Figure 3 Tumorigenic mechanism in somatotroph cells 

cAMP-associated pathways are key for somatotroph tumorigenesis. GHRH released by the 

hypothalamus interacts with its receptor (GHRH-R) on the somatotroph cell membrane to increase 

activation of adenylyl cyclase through Gαs. Consequent increased cAMP production leads to the 

dissociation of the regulatory subunits (R) of protein kinase A (PKA) from the catalytic subunits (C), 
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which then translocate to the nucleus and phosphorylate CREB (cAMP response element) and other 

targets, eventually leading to increased GH expression and cell proliferation. Mosaic (McCune-

Albright syndrome) or somatic activating mutations in GNAS (coding for Gαs) lead to upregulation of 

the cAMP pathway.  In Carney complex, increased PKA activity, either due to the inhibitory action of 

the regulatory subunit PRKAR1A, or increased catalytic subunit activity (PRKACB) leads to 

tumorigenesis.  

Loss of AIP has been shown to increase cAMP signaling through: i) decreased expression of the G 

inhibitory protein Gαi-2,which mediates the inhibitory effects of somatostatin (SS) on adenylyl 

cyclase;  AIP deficiency is associated with reduced Gαi-2 expression  in human and mouse GH-PTs 

(30); ii) an interaction with phosphodiesterases type 4 (PDE4) (34): expression of type 4 

phosphodiesterase is lower in AIP-mutated GH-PTs compared to sporadic GH-PTs (35) and AIP 

mutations disrupt the interaction of AIP with PDE4A5 in GH3 cells (33); iii) interaction of AIP with 

members of the PKA complex (36,37); iv) AIP deficiency results in reduced ZAC1 levels (38,39); v-vii) 

AIP is associated with mitochondrial proteins TOMM20 and HSPA9 (37,283), the endoplasmatic 

reticulum calcium channel RYR (29) and with secretory vesicles (33), but the exact mechanisms as to 

how these interactions might lead to tumorigenesis are unclear. GPR101 is Gsα-coupled 

constitutively active receptor leading to increased cAMP signaling. The mechanism of GPR101-

related tumorigenesis may occur via a dual mechanism: hypothalamic dysregulation as elevated 

GHRH levels can be measured in some patients, while there may be a direct pituitary action due to 

increased GPR101 expression on pituitary cells. Recently and endogenous ligand has been identified, 

the lipid mediator Resolvin D5 (RsD5), the role of this mediator in the regulation of the GH axis and 

its levels in patients with XLAG is currently unknown. Ectopic expression of GIPR may also lead to an 

activated cAMP pathway (263-265).  
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Figure 4 Tumorigenic mechanism in corticotroph cells (141)

USP8 removes ubiquitin tags through its deubiquitinase action from its targets, such as EGFR and 

Smoothened (SMO), preventing them from being degraded in the lysosome and allowing recycling 

back to the cell surface. Increased EGFR and SMO activity leads to increased cAMP signaling and 

POMC levels. Mutated USP8 cannot bind 14-3-3 protein and undergoes cleavage, which increases its 

enzymatic activity, leading to increased deubiquitination of EGFR and SMO with higher expression 

on the cell membrane. Similarly, GLI1 and histone 2a (H2A) are suggested to be target of USP48 

leading to increased activity with USP48 mutations. Loss-of-function of DICER1, TP53, MLH1 and 

MSH2 and gain-of-function of BRAF has also been suggested to be associated with corticotroph 

tumorigenesis. 
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Table 1: Suggested germline variants, which may underlie FIPA. Gene locations are according to the using Human Genome hg19/GRCh37 assembly. 

Gene 
 
(symbol) 

Gene 
 (name) 

Location Association with 
hormone-secreting 
subtype 

Function of gene 
product and 
mechanism of 
tumorigenesis if known 

In vitro evidence In vivo 
evidence 

Loss of 
heterozygosity  

Familial 
presentation 

References 
 

CABLES1 Cdk5 and Abl 
enzyme 
substrate 1 

18: 
20,714,528-
20,840,431 

ACTH-PTs Cell cycle progression: 
inhibits corticotroph 
cell proliferation. 

Increased 
proliferation seen in 
corticotroph cells 
following knockdown 
using Cables1 small 
interfering RNA (76). 
All identified variants 
located close to the 
predicted cyclin-
dependent kinase-3 
(CDK3)-binding region 
of CABLES1 and 
showed impaired 
ability to block cell 
proliferation in 
response to 
dexamethasone in 
corticotroph cells 
(77). 

None 
available 

Not found for 
all variants 

Simplex for all 
identified 
variants 

 (77) 
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Gene 
 
(symbol) 

Gene 
 (name) 

Location Association with 
hormone-secreting 
subtype 

Function of gene 
product and 
mechanism of 
tumorigenesis if known 

In vitro evidence In vivo 
evidence 

Loss of 
heterozygosity  

Familial 
presentation 

References 
 

PRLR Prolactin 
receptor 

5: 
35,048,861-
35,230,794 

PRL-PTs  Prolactin receptor Increased prolactin-
induced AKT signaling 
and proliferation seen 
in p.Asn516Ile only 
(gain-of-function) 
(78). p.Ile100Val, 
p.Ile170Leu, 
p.Glu108Lys and 
p.Glu554Gln have no 
effect on PRLR 
expression, 
localization and 
signaling after 
prolactin stimulation 
in vitro, suggestive of 
minimal functional 
relevance (78,79) 

Female mice 
with a 
germline loss-
of-function 
mutation in 
PRLR show 
large PRL-PTs 
(80) with a 
penetrance of 
100% from 12 
months of 
age (81) 

Not 
investigated 
 

Gorvin et al: 
Familial in 
p.Ile100Val,  
simplex in 
p.Glu400Gln, 
p.Asp492Ile, 
unavailable for 
other variants 
(78) 
 
Bernard et al: 
simplex cases in 
all variants 
identified 
(p.Ile100Val, 
p.Ile170Leu, 
p.Glu108Lys and 
p.Glu554Gln) (79) 

 (78,79) 

RXRG  Retinoid X 
receptor 
gamma 

1: 
165,370,159-
165,414,433 

PRL-PTs Forms dimers with 
ligands, increasing their 
DNA binding and 
transcriptional 
function. The identified 
variant p.R317H 
localizes to the ligand-
binding domain of the 
protein and may 
disrupt interactions. 

None available None 
available 

Not 
investigated 

Familial  (82) 
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Gene 
 
(symbol) 

Gene 
 (name) 

Location Association with 
hormone-secreting 
subtype 

Function of gene 
product and 
mechanism of 
tumorigenesis if known 

In vitro evidence In vivo 
evidence 

Loss of 
heterozygosity  

Familial 
presentation 

References 
 

TH Tyrosine 
hydroxylase 

11: 
2,185,159-
2,193,107 

PRL-PTs Converts L-tyrosine into 
L-3,4-
dihydroxyphenylalanine 
(L-DOPA), the essential 
and rate-limiting step 
to formation of 
dopamine. Reduced 
dopaminergic activity 
leads to reduced 
inhibitory effects on 
lactotroph cells, 
increasing prolactin 
secretion. 

primary cultures of 
human lactotroph 
tumor cells were 
transfected with an 
adenovirus vector 
containing a cDNA 
encoding a human 
tyrosine hydroxylase: 
transfection induced 
increased production 
of dopamine, 
resulting in the 
predicted biologic 
effect of decreased 
prolactin secretion 
(83) 

adenovirus-
mediated 
delivery of 
tyrosine 
hydroxylase 
reduces 
pituitary 
growth and 
circulating 
prolactin 
levels in a 
model of 
estrogen-
induced 
pituitary 
tumors in rats 
(84) 
 

Not 
investigated 

Familial  (82) 

CDH23 Cadherin 
related 23 

10: 
73,156,691-
73,575,702 

None specific calcium-dependent 
cell-cell adhesion 
glycoprotein 

None available None 
available 

Not 
investigated 

Familial   (85) 
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Gene 
 
(symbol) 

Gene 
 (name) 

Location Association with 
hormone-secreting 
subtype 

Function of gene 
product and 
mechanism of 
tumorigenesis if known 

In vitro evidence In vivo 
evidence 

Loss of 
heterozygosity  

Familial 
presentation 

References 
 

IGSF1 Immunoglobulin 
superfamily 
member 1 

X: 
130,407,480-
130,533,677 

Somatomammotroph 
hyperplasia 

Membrane 
glycoprotein with 
modified residue 
possibly altering 
interaction with an 
extracellular ligand. 

Transfection of GH3 
cells with the 
p.N604T  
IGSF1 variant did not 
significantly affect GH 
production compared 
to wild-type. The 
mutant protein 
showed the same 
pattern of maturation 
and stability as wild-
type when expressed 
in heterologous cells 
and was detected in 
the plasma  
membrane (86) 

Male 
Igsf1Δexon1 
null mice 
show 
increased 
serum IGF1 at 
10 weeks. 
Assessment 
of the 
knockout 
model 
(Igsf1Δ312) 
demonstrated 
enhanced 
pituitary Gh 
mRNA 
expression 
(87). 

Not 
investigated 

Familial  (86) 
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Table 2: Germline non-synonymous missense variants identified with predictions of pathogenicity using SIFT, PolyPhen and Condel. Variants that could not 

be identified unambiguously have been excluded (PRLR, p.Arg477Trp (78) and p.Glu108Lys (79), and CDH23, p.Arg3138Trp, p.Arg2115His, p.Arg3138Trp, 

p.Asp3296Asn (85)) and have not been included in following Table. The variant associated with TH is a truncating mutation and does not have any 

predictions of pathogenicity using the missense tools. HGVSc, Human Genome Variation Society (HGVS) coding sequence name; HGVSp, HGVS protein 

sequence name; SIFT, Sorting intolerant from tolerant prediction tool 

Gene 
 (symbol) 

Location HGVSc HGVSp gnomAD allele 
frequency 

SIFT 
interpretation 

PolyPhen 
interpretation 

Condel 
interpretation 

References 
 

CABLES1 18:20716258 ENST00000256925.7:c.532G>A ENSP00000256925.7:p.Glu178Lys 0.0101 deleterious 
low 
confidence 

benign N/A  (77) 

18:20716444 ENST00000256925.7:c.718C>T ENSP00000256925.7:p.Leu240Phe 0.000773 deleterious 
low 
confidence 

probably 
damaging 

deleterious 

18:20774429 ENST00000256925.7:c.935G>A ENSP00000256925.7:p.Gly312Asp 0.0000601 deleterious  probably 
damaging 

deleterious 

18:20817151 ENST00000256925.7:c.1388A>G ENSP00000256925.7:p.Asp463Gly not present deleterious  probably 
damaging 

deleterious 

PRLR 
 

5:35084704 ENST00000382002.5:c.241G>A ENSP00000371432.5:p.Gly81Ser 0.0001328 tolerated benign neutral  (78) 

5:35065862 ENST00000382002.5:c.1198G>C ENSP00000371432.5:p.Glu400Gln 0.000898 tolerated possibly 
damaging 

deleterious 

5:35065513 ENST00000382002.5:c.1547A>T ENSP00000371432.5:p.Asn516Ile 0.0008925 deleterious possibly 
damaging 

deleterious 

5:35084647 ENST00000382002.5:c.298A>G ENSP00000371432.5:p.Ile100Val 0.04221 tolerated benign neutral  (78,79) 

5:35072712 ENST00000382002.5:c.508A>C ENSP00000371432.5:p.Ile170Leu 0.01884 tolerated benign neutral 

5:35065328 ENST00000382002.5:c.1732G>C ENSP00000371432.5:p.Glu578Gln 0.001195 tolerated possibly 
damaging 

deleterious  (79) 

RXRG  1:165378891 ENST00000359842.5:c.950G>A ENSP00000352900.5:p.Arg317His 0.00002495 deleterious probably 
damaging 

Deleterious  (82) 

TH 11:2186469 ENST00000381178.1:c.1420A>T ENSP00000370571.1:p.Lys474Ter not present N/A N/A N/A  (82) 

CDH23 10:73494028 ENST00000224721.6:c.4151G>T ENSP00000224721.6:p.Arg1384Leu not present deleterious probably 
damaging 

deleterious  (85) 

IGSF1 X:130412680 ENST00000370903.3:c.1811A>C ENSP00000359940.3:p.Asn604Thr 0.009383 tolerated probably 
damaging 

deleterious  (86) 
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Table 3: Novel recurrently mutated somatic variants identified through whole exome sequencing (WES) studies. 

Gene 
associated 
with variant, 
symbol 

Gene name Hormone 
subtype 

Mechanism of tumorigenesis References  

NR3C1 Nuclear receptor 
subfamily 3 group C 
member 1 

ACTH-PT Glucocorticoid receptor. If mutated, this receptor may become insensitive to feedback from cortisol 
leading to ACTH over-production (154).  

 (125,137,144,155) 

MEN1 Menin 1 Plurihormonal 
(GH/PRL) 

Inactivating mutations underlie multiple endocrine neoplasia type 1, an autosomal dominant 
syndrome with pituitary tumors as part of the phenotype. 

 (105,125) 

KIF5A Kinesin heavy 
chain isoform 5A 

PRL, GT  Modulates cell proliferation. Somatic mutations 
also found in prostate cancer (156) 

 (125) 

GRB10 Growth factor receptor 
bound protein 10 

GH-PT Suppresses signals from activated receptors tyrosine kinases, including insulin-like growth factor type 
1 receptors. Inactivating mutations may allow increased signaling facilitating somatotroph 
tumorigenesis 

 (125) 

BRAF BRAF proto-oncogene, 
serine/threonine kinase 

ACTH-PT Elevated kinase activity with activation of MAPK pathway and transactivation of POMC, which is the 
precursor of ACTH.  
Well-established oncogenic roles in melanoma and multiple carcinomas. 

 (143,144) 

USP48 Ubiquitin specific 
peptidase 48 

ACTH-PT USP48 has been suggested to increase transcriptional activation of POMC through the NF-κB 
pathway, increase response to CRH and possibly involve the hedgehog pathway. 

 (143,144) 

PABPC1 poly (A) binding protein 
cytoplasmic 1 

ACTH-PT Binds the poly (A) tail of mRNA and is involved in regulatory processes such as pre-mRNA splicing and 
regulation of nonsense-mediated decay. 

 (107) 

TP53 Cellular tumor antigen 
p53 

ACTH-PT Well-established tumor suppressor with role in cell cycle arrest, DNA repair and apoptosis induction. (119) 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/advance-article-abstract/doi/10.1210/endrev/bnaa006/5810899 by guest on 31 M

arch 2020



Acc
ep

te
d 

M
an

us
cr

ipt
  

 60 

Table 4: Somatic variants identified from WES studies using specific tumor subtypes.  

Tumor 
subtype 

Sequencing 
technique 

Insight into tumorigenesis Refer
ences 

GH-PT WGS (40), 
WES (41) 

No recurrent mutations; somatic variants mediating calcium signaling (40,41), ATP signaling (40) and cAMP signaling (41) identified.  
(40,4
1) 

ACTH-
PT 

WES Enhanced promoter activity and increased transcription of POMC through different mechanisms can lead to tumorigenesis.  (144) 

TSH-PT WES Six candidate variants identified, of which two have previously characterized tumorigenic roles: a) Increased expression of SMOX is associated with gastric 
cancer, and b) SYTL3 encodes proteins which interact with RAB27 and deregulation of this pathway is associated with bladder cancer. 

 (160) 

NFPT WES Somatic variants in putative driver genes including platelet-derived growth factor D (PDGFD), N-myc down-regulated gene family member 4 (NDRG4), and 
Zipper sterile-motif kinase (ZAK) identified. However, these mutations were not replicated in the validation set.  

 (161) 
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Table 5: Varying functions of microRNAs in pituitary tumorigenesis with illustrative examples from publications from the last five years 

Major function Mechanisms of action and/or 
relevant examples 

Supporting evidence 

MicroRNAs can 
demonstrate a tumor 
suppressor action by 
targeting oncogenic gene 
products for degradation 
 

microRNAs regulate the cell 
cycle, facilitating increased 
proliferation when 
deregulated (213) 

miR-23b and miR-130b, targeting HMGA2 and cyclin A2 respectively, are downregulated in GH-PTs, GT-PTs and NFPTs (216). 
HMGA2 is a high mobility group protein, which shows increased expression in pituitary tumors (217,218). HMGA2 
overexpression enhances E2F1 activity and drives cell cycle (219,220) microRNAs targeting HMGA2 and E2F1 are 
downregulated in pituitary tumors (218,221) 
 

miR-410 targeting the cyclin B1 gene is downregulated in GT-PTs (222) 
 

miR-186 targets SKP2, which inhibits expression of p27, a negative regulator of G1 cell cycle progression, increasing 
proliferation. In human pituitary tumors, miR-186 and p27 expression is downregulated, while SKP2 expression is upregulated 
(223). In vitro, SKP2 overexpression decreases p27 expression and increases cell growth (223).  

Multiple microRNAs, when 
downregulated, lead to 
increased expression of PTTG1 
and its partners 

p53 activates transcription of miR-329, miR-300, miR-381, and miR-655 in pituitary tumor cells, which target (224) 

miR-423-5p (targeting PTTG1) shows decreased expression in GH-PTs with increased PTTG1 expression compared to normal 
pituitary (225) 
 

Overexpression of miR-524-5p downregulates expression of PTTG1 binding factor, which interacts with PTTG1 to mediate 
downstream effects (226), and significantly attenuates proliferation, migration, and invasion in folliculostellate cells (227); 
downregulation of this microRNA may mediate increased proliferation in the pituitary through PTTG1 

Other tumor-suppressive 
microRNAs which show 
reduced expression in human 
pituitary tumors or relevant 
cell lines  

miR-205-5p targeting CBX1 in pituitary cell lines (228) 

miR‑1 targeting G6PD in human pituitary tumors (229) 

miR-34a  targeting SOX7 in GH4C1 cells (230) 

miR-378 targeting RNF31 in human pituitary tumors (231) 

Increased expression of 
certain microRNAs can 
drive tumorigenesis by 
targeting gene products 
with tumor suppressor 
roles for degradation 

High levels of miR-107 (232 ) 
and miR-34 (233) target AIP 
mRNA in pituitary tumors 

miR-107 expression is significantly upregulated in GH-secreting and non-functioning pituitary tumors and inhibits in vitro AIP 
expression (232) 

miR-34 is highly expressed in tumors with low AIP protein levels compared to tumors with high levels (233). miR-34 
overexpression in HEK293 and GH3 cells inhibits endogenous AIP expression (233) 
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Major function Mechanisms of action and/or 
relevant examples 

Supporting evidence 

MicroRNAs may regulate 
subtype-specific 
mechanisms of 
tumorigenesis 

Distinct profiles identified in 
tumor subtypes with 
differential microRNA 
expression specific to subtype. 

Next generation sequencing and other techniques in GH-PTs, GT-PTs and NFPT subtypes (234,235) 

TSP-1, which has a tumor suppressor role, shows decreased expression in ACTH-PTs with increased miR-449c expression 
inhibiting its expression (236) 

Four groups, miR1 to miR4, are strongly associated with tumor type with PIT1-lineage tumors being distinctly different from 

GT-PTs and ACTH-PTs (15) 

MicroRNAs play a 
prominent role in driving 
tumor invasion 
 

Decreased expression of mi-
RNAs can have an anti-
apoptotic effect, mediating 
invasion: 

Downregulation of miR-132 and miR-15a/16 with upregulation of SOX5 is seen in invasive tumors (237). MiR-15a and miR-16-1 
are also downregulated in pituitary tumors that develop after 12 months of age in mice with heterozygous Men1 knockout 
(238). MiR-16 expression, which induces apoptosis (via Bax) and decreases proliferation, is reduced in pituitary tumors (239) 
 

Invasive pituitary tumors show lower miR-21 expression with increased expression of its target, PITX2, which has an anti-
apoptotic role (240) 

MiR-145-5p expression (targeting TPT1) correlates negatively with NFPT invasiveness. MiR-145-5p brings about apoptosis 
through Bcl-xL downregulation and Bax upregulation (241) 
 

MiR-543 expression is increased in invasive tumors (242) and activates the Wnt/β-catenin pathway by downregulating Smad7. 
Overexpression of miR-543 in HP75 cells increases cell proliferation, migration and invasion and decreases apoptosis (242) 
 

microRNAs driving invasion 
specific to tumor subtype have 
also been identified:  
 

MiR-183, which targets KIAA0101 (a cell cycle activator), is downregulated in aggressive PRL-PTs and demonstrates an inverse 
correlation with Ki-67 indices (243) 
 

MicroRNA 106b~25 cluster shows increased expression in invasive ACTH-PTs and Crooke cell adenomas (244). MiR-106b is 
upregulated in pituitary tumors and can increase migration and invasion of pituitary tumor cells through the 
phosphatidylinositol 3-kinase (PI3K)/AKT pathway (245,246) 
 

Differential microRNA profiles have been identified in invasive NFPTs (247) 
 

MiR-26b (targeting PTEN) is upregulated and miR-128 (targeting BMI1) is down-regulated in GH-PTs compared to control and 
is shown to mediate growth and invasiveness of pituitary tumor cells (248). MiR-338-3p expression is increased in invasive GH-
PTs and is mediated through upregulation of PTTG1 (249) 
 

The same microRNAs may even play different roles in different tumor subtypes: miR-410-3p significantly upregulates 
proliferation, invasiveness, cyclin B1 levels and activation of MAPK, PTEN/AKT, and STAT3 signaling pathways in gonadotroph 
and corticotroph cells but not in somatotroph cells (250) 
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Major function Mechanisms of action and/or 
relevant examples 

Supporting evidence 

Other microRNAs discovered 
recently through comparison 
of invasive and non-invasive 
pituitary tumors (target gene 
in parentheses):  
 

Reduced expression of microRNA in invasive tumors: 
 

microRNA Targeted gene Reference 

miR-145 FSCN1  (251) 

miR-124 PTTG1IP  (251) 

miR-183 EZR  (251) 

miR-148-3p and miR-152 ALCAM  (252) 

miR-200b PKCα  (253) 

miRNA-145 AKT3  (254) 
 

Increased expression of microRNA in invasive tumors: 

miR-26a PLAG1  (255) 

miR-20a and miR-17-5p PTEN and TIMP2  (256) 
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Essential points: These provide the main takeaway messages from the article. There should be 

between three and seven bulleted points. Each point should consist of a single sentence, although 

there is no character limit imposed on the sentence. 

1. An increasing number of genes with germline mutations are known now to be associated with 

pituitary tumors, some causing syndromic disease while others isolated pituitary adenomas. 

2. Gain-of-function somatic mutations are common in somatotropinomas in the GNAS gene and 

in corticotropinomas in USP8. 

3. Other, less common somatic variants recently identified through next generation sequencing 

need to be confirmed in independent cohorts and elucidated through functional studies in the 

future. 

4. Epigenetic modifications (DNA methylation, histone modification and non-coding RNAs) can 

greatly influence tumorigenesis and tumor characteristics such as subtype differentiation and 

local invasion. 

5. An integrated multi-omics approach to characterize genetic and epigenetic pathways allows 

better understanding the molecular mechanisms that underlie pituitary tumorigenesis within 

and across the various subtypes and may lead better prognostic factors. 
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