138 research outputs found
Modeling lens potentials with continuous neural fields in galaxy-scale strong lenses
Strong gravitational lensing is a unique observational tool for studying the
dark and luminous mass distribution both within and between galaxies. Given the
presence of substructures, current strong lensing observations demand more
complex mass models than smooth analytical profiles, such as power-law
ellipsoids. In this work, we introduce a continuous neural field to predict the
lensing potential at any position throughout the image plane, allowing for a
nearly model-independent description of the lensing mass. We apply our method
on simulated Hubble Space Telescope imaging data containing different types of
perturbations to a smooth mass distribution: a localized dark subhalo, a
population of subhalos, and an external shear perturbation. Assuming knowledge
of the source surface brightness, we use the continuous neural field to model
either the perturbations alone or the full lensing potential. In both cases,
the resulting model is able to fit the imaging data, and we are able to
accurately recover the properties of both the smooth potential and of the
perturbations. Unlike many other deep learning methods, ours explicitly retains
lensing physics (i.e., the lens equation) and introduces high flexibility in
the model only where required, namely, in the lens potential. Moreover, the
neural network does not require pre-training on large sets of labelled data and
predicts the potential from the single observed lensing image. Our model is
implemented in the fully differentiable lens modeling code Herculens
The growth of structure in the Szekeres inhomogeneous cosmological models and the matter-dominated era
This study belongs to a series devoted to using Szekeres inhomogeneous models
to develop a theoretical framework where observations can be investigated with
a wider range of possible interpretations. We look here into the growth of
large-scale structure in the models. The Szekeres models are exact solutions to
Einstein's equations that were originally derived with no symmetries. We use a
formulation of the models that is due to Goode and Wainwright, who considered
the models as exact perturbations of an FLRW background. Using the Raychaudhuri
equation, we write for the two classes of the models, exact growth equations in
terms of the under/overdensity and measurable cosmological parameters. The new
equations in the overdensity split into two informative parts. The first part,
while exact, is identical to the growth equation in the usual linearly
perturbed FLRW models, while the second part constitutes exact non-linear
perturbations. We integrate numerically the full exact growth rate equations
for the flat and curved cases. We find that for the matter-dominated era, the
Szekeres growth rate is up to a factor of three to five stronger than the usual
linearly perturbed FLRW cases, reflecting the effect of exact Szekeres
non-linear perturbations. The growth is also stronger than that of the
non-linear spherical collapse model, and the difference between the two
increases with time. This highlights the distinction when we use general
inhomogeneous models where shear and a tidal gravitational field are present
and contribute to the gravitational clustering. Additionally, it is worth
observing that the enhancement of the growth found in the Szekeres models
during the matter-dominated era could suggest a substitute to the argument that
dark matter is needed when using FLRW models to explain the enhanced growth and
resulting large-scale structures that we observe today (abridged)Comment: 18 pages, 4 figures, matches PRD accepted versio
Improving Crop Yield and Nutrient Use Efficiency via Biofertilization - A Global Meta-analysis
The application of microbial inoculants (biofertilizers) is a promising technology for future sustainable farming systems in view of rapidly decreasing phosphorus stocks and the need to more efficiently use available nitrogen (N). Various microbial taxa are currently used as biofertilizers, based on their capacity to access nutrients from fertilizers and soil stocks, to fix atmospheric nitrogen, to improve water uptake or to act as biocontrol agents. Despite the existence of a considerable knowledge on effects of specific taxa of biofertilizers, a comprehensive quantitative assessment of the performance of biofertilizers with different traits such as phosphorus solubilization and N fixation applied to various crops at a global scale is missing. We conducted a meta-analysis to quantify benefits of biofertilizers in terms of yield increase, nitrogen and phosphorus use efficiency, based on 171 peer reviewed publications that met eligibility criteria. Major findings are: (i) the superiority of biofertilizer performance in dry climates over other climatic regions (yield response: dry climate +20.0 ± 1.7%, tropical climate +14.9 ± 1.2%, oceanic climate +10.0 ± 3.7%, continental climate +8.5 ± 2.4%); (ii) meta-regression analyses revealed that yield response due to biofertilizer application was generally small at low soil P levels; efficacy increased along higher soil P levels in the order arbuscular mycorrhizal fungi (AMF), P solubilizers, and N fixers; (iii) meta-regressions showed that the success of inoculation with AMF was greater at low organic matter content and at neutral pH. Our comprehensive analysis provides a basis and guidance for proper choice and application of biofertilizers
Seismic geomorphology of cretaceous megaslides offshore Namibia (Orange Basin):Insights into segmentation and degradation of gravity-driven linked systems
This study applies modern seismic geomorphology techniques to deep-water collapse features in the Orange Basin (Namibian margin, Southwest Africa) in order to provide unprecedented insights into the segmentation and degradation processes of gravity-driven linked systems. The seismic analysis was carried out using a high-quality, depth-migrated 3D volume that images the Upper Cretaceous post-rift succession of the basin, where two buried collapse features with strongly contrasting seismic expression are observed. The lower Megaslide Complex is a typical margin-scale, extensional-contractional gravity-driven linked system that deformed at least 2 km of post-rift section. The complex is laterally segmented into scoop-shaped megaslides up to 20 km wide that extend downdip for distances in excess of 30 km. The megaslides comprise extensional headwall fault systems with associated 3D rollover structures and thrust imbricates at their toes. Lateral segmentation occurs along sidewall fault systems which, in the proximal part of the megaslides, exhibit oblique extensional motion and define horst structures up to 6 km wide between individual megaslides. In the toe areas, reverse slip along these same sidewall faults, creates lateral ramps with hanging wall thrust-related folds up to 2 km wide. Headwall rollover anticlines, sidewall horsts and ramp anticlines may represent novel traps for hydrocarbon exploration on the Namibian margin.The Megaslide Complex is unconformably overlain by few hundreds of metres of highly contorted strata which define an upper Slump Complex. Combined seismic attributes and detailed seismic facies analysis allowed mapping of headscarps, thrust imbrications and longitudinal shear zones within the Slump Complex that indicate a dominantly downslope movement of a number of coalesced collapse systems. Spatial and stratal relationships between these shallow failures and the underlying megaslides suggest that the Slump Complex was likely triggered by the development of topography created by the activation of the main structural elements of the lower Megaslide Complex. This study reveals that gravity-driven linked systems undergo lateral segmentation during their evolution, and that their upper section can become unstable, favouring the initiation of a number of shallow failures that produce widespread degradation of the underlying megaslide structures. Gravity-driven linked systems along other margins are likely to share similar processes of segmentation and degradation, implying that the megaslide-related, hydrocarbon trapping structures discovered in the Namibian margin may be common elsewhere, making megaslides an attractive element of deep-water exploration along other gravitationally unstable margins
Geographical variation in morphology of Chaetosiphella stipae stipae Hille Ris Lambers, 1947 (Hemiptera: Aphididae: Chaitophorinae)
Chaetosiphella stipae stipae is a xerothermophilous aphid, associated with Palaearctic temperate steppe zones or dry mountain valleys, where there are grasses from the genus Stipa. Its geographical distribution shows several populations that are spread from Spain, across Europe and Asia Minor, to Mongolia and China. Geographical variation in chaetotaxy and other morphological features were the basis to consider whether individuals from different populations are still the same species. Moreover, using Ch. stipae stipae and Stipa species occurrences, as well as climatic variables, we predict potential geographical distributions of the aphid and its steppe habitat. Additionally, for Stipa species we projected current climatic conditions under four climate change scenarios for 2050 and 2070. While highly variable, our results of morphometric analysis demonstrates that all Ch. stipae stipae populations are one very variable subspecies. And in view of predicted climate change, we expect reduction of Stipa grasslands. The disappearance of these ecosystems could result in stronger separation of the East-European and Asian steppes as well as European ‘warm-stage’ refuges. Therefore, the geographic morphological variability that we see today in the aphid subspecies Ch. stipae stipae may in the future lead to speciation and creation of separate subspecies or species
Enter Mercury, Sleeping: Delivering Prayers on the Early Modern Stage
This is the author accepted manuscript. The final version is available from CUP via the DOI in this recor
- …