122 research outputs found

    Covid-19 and Inequity: A comparative spatial analysis of New York City and Chicago hot spots

    Full text link
    There have been numerous reports that the impact of the ongoing COVID-19 epidemic has disproportionately impacted traditionally vulnerable communities, including well-researched social determinants of health, such as racial and ethnic minorities, migrants, and the economically challenged. The goal of this ecological cross-sectional study is to examine the demographic and economic nature of spatial hot and cold spots of SARS-CoV-2 rates in New York City and Chicago as of April 13, 2020. In both cities, cold spots (clusters of low SARS-CoV-2 rate ZIP code tabulation areas) demonstrated typical protective factors associated with the social determinants of health and the ability to social distance. These neighborhoods tended to be wealthier, have higher educational attainment, higher proportions of non-Hispanic white residents, and more workers in managerial occupations. Hot spots (clusters of high SARS-CoV-2 rate ZIP code tabulation areas) also had similarities, such as lower rates of college graduates and higher proportions of people of color. It also appears to be larger households (more people per household), rather than overall population density, that may to be a more strongly associated with hot spots. Findings suggest important differences between the cities’ hot spots as well. They can be generalized by describing the NYC hot spots as working-class and middle-income communities, perhaps indicative of service workers and other occupations (including those classified as “essential services” during the pandemic) that may not require a college degree but pay wages above poverty levels. Chicago’s hot spot neighborhoods, on the other hand, are among the city’s most vulnerable, low-income neighborhoods with extremely high rates of poverty, unemployment, and non-Hispanic Black residents

    Burden of disease resulting from lead exposure at toxic waste sites in Argentina, Mexico and Uruguay

    Get PDF
    Background: Though lead contaminated waste sites have been widely researched in many high-income countries, their prevalence and associated health outcomes have not been well documented in low- and middle-income countries. Methods: Using the well-established health metric disability-adjusted life year (DALY) and an exposure assessment method developed by Chatham-Stephens et al., we estimated the burden of disease resulting from exposure to lead at toxic waste sites in three Latin American countries in 2012: Argentina, Mexico and Uruguay. Toxic waste sites identified through Pure Earth’s Toxic Sites Identification Program (TSIP) were screened for lead in both biological and environmental sample media. Estimates of cardiovascular disease incidence and other outcomes resulting from exposure to lead were utilized to estimate DALYs for each population at risk. Results: Approximately 316,703 persons in three countries were at risk of exposure to pollutants at 129 unique sites identified through the TSIP database. Exposure to lead was estimated to result in between 51,432 and 115,042 DALYs, depending on the weighting factor used. The estimated burden of disease caused by exposure to lead in this analysis is comparable to that estimated for Parkinson’s disease and bladder cancer in these countries. Conclusions: Lead continues to pose a significant public health risk in Argentina, Mexico, and Uruguay. The burden of disease in these three countries is comparable with other widely recognized public health challenges. Knowledge of the relatively high number of DALYs associated with lead exposure may be used to generate support and funding for the remediation of toxic waste sites in these countries and others

    Manganese concentrations in soil and settled dust in an area with historic ferroalloy production

    Get PDF
    Ferroalloy production can release a number of metals into the environment, of which manganese (Mn) is of major concern. Other elements include lead, iron, zinc, copper, chromium, and cadmium. Manganese exposure derived from settled dust and suspended aerosols can cause a variety of adverse neurological effects to chronically exposed individuals. To better estimate the current levels of exposure, this study quantified metal levels in dust collected inside homes (n=85), outside homes (n=81), in attics (n=6), and in surface soil (n=252) in an area with historic ferroalloy production. Metals contained in indoor and outdoor dust samples were quantified using inductively coupled plasma optical emission spectroscopy while attic and soil measurements were made with a XRF instrument. Mean Mn concentrations in soil (4600 ÎŒg/g) and indoor dust (870 ÎŒg/g) collected within 0.5 km of a plant exceeded levels previously found in suburban and urban areas, but did decrease outside 1.0 km to the upper end of background concentrations. Mn concentrations in attic dust were approximately 120 times larger than other indoor dust levels, consistent with historical emissions that yielded high airborne concentrations in the region. Considering the potential health effects that are associated with chronic manganese inhalation and ingestion exposure, remediation of soil near the plants and frequent, on-going hygiene indoors may decrease residential exposure and the likelihood of adverse health effects

    Characterization of Staphylococcus pseudintermedius isolated from diseased dogs in Lithuania

    Get PDF
    The aim of this study was to characterize Staphylococcus pseudintermedius for its antimicrobial resistance and virulence factors with a special focus on methicillin-resistant (MRSP) strains isolated from sick dogs in Lithuania. Clinically sick adult dogs suffering from infections (n=214) and bitches with reproductive disorders (n=36) from kennels were selected for the study. Samples (n=192) from the 250 tested (76.8%) dogs were positive for Staphylococcus spp. Molecular profiling using the species-specific nuc gene identified 51 isolates as S. pseudintermedius (26.6% from a total number of isolated staphylococci) of which 15 isolates were identified as MRSP. Ten MRSP isolates were isolated from bitches with reproductive disorders from two large breeding kennels. Data on susceptibility of S. pseudintermedius to different antimicrobials revealed that all isolates were susceptible to vancomycin, daptomycin and linezolid. Two isolates (3.9%) were resistant to rifampicin. A high resistance was seen towards penicillin G (94.1%), tetracycline (64.7%) and macrolides (68.7%). Resistance to fluoroquinolones ranged from 25.5% (gatifloxacin) to 31.4% (ciprofloxacin). The most prevalent genes encoding resistance included blaZ, aac(6â€Č)-Ie-aph(2″)-Ia, mecA, and tet(M). The Luk-I gene encoding a leukotoxin was detected in 29% of the isolates, whereas the siet gene encoding exfoliative toxin was detected in 69% of the S. pseudintermedius isolates. This report of MRSP in companion animals represents a major challenge for veterinarians in terms of antibiotic therapy and is a concern for both animal and public health

    Airborne concentration and deposition of trace metals and metalloids in an urban area downwind of a manganese alloy plant

    Get PDF
    The evaluation of the content of metals and metalloids in particulate matter (PM) and in atmospheric deposition in areas impacted by local industries is essential from an environmental and health risk perspective. In this study, the PM10 levels and atmospheric deposition fluxes of potentially toxic metals and metalloids were quantified at three urban sites of the Cantabrian region (northern Spain), located at different distances downwind of a Mn alloy plant. The content of Mn, V, Fe, Ni, Cu, Zn, As, Mo, Cd, Sb and Pb in PM10 and in the water-soluble and insoluble fractions of the deposition was determined by ICP-MS. Among the studied elements, the highest concentrations in PM10 and deposition rates were found for Mn, Fe, Zn and Pb, associated with the Mn alloy industry, and for Cu, related to non-exhaust traffic emissions. The levels of Mn, Fe, Zn and Pb in PM10 were higher in autumn, when the most frequent winds blow from the S-SW, whereas their highest deposition rates were found in winter and autumn, which are characterized by high monthly average precipitations. The water-soluble fraction of the atmospheric deposition of most metals increased with distance from the Mn alloy plant. The highest water-soluble fractions were found for Ni (72%), Zn (62%), Cu (60%) and Mn (49%). These results will be useful for the health risk assessment of the metal exposure associated with Mn alloy plants, as well as for the evaluation of the metal burden to soil, water and ecosystems related to this industrial activity.This work was financially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) through the CTM2013-43904R Project. Ana HernĂĄndez-PellĂłn would like to thank the Ministry of Economy and Competitiveness (MINECO) for the FPI grant awarded, reference number BES-2014-068790

    Characterization of manganese-bearing particles in the vicinities of a manganese alloy plant

    Get PDF
    Numerous studies have associated air manganese (Mn) exposure with negative health effects, primarily neurotoxic disorders. Despite there is not a specific European regulation, institutions such as the World Health Organization (WHO) have proposed an annual average guideline value of 150 ng/m3. Bioaccessibility and toxicity mechanisms of Mn remain unclear, however it is generally agreed that adverse health effects are strongly linked to particle size and morphology, chemical composition and oxidation state. This study aims to deepen the understanding of the physico-chemical characteristics of PM10 and deposition samples collected in an urban area in the proximities of a ferromanganese alloy plant. Total Mn content was determined by ICP-MS after a microwave-assisted acid digestion. The size, morphology and chemical composition of individual particles were studied by SEM-EDX. XRD was used to identify the major crystalline phases. Most of the particles observed by SEM-EDX contain Mn. 60% of Mn-PM10 particles were spheres of small size and were attributed to condensation processes at the smelting unit. Mn-bearing particles present in deposition were characterized by irregular shapes and bigger sizes, most of them consisting of SiMn slags and Mn ores and alloys, and attributed to diffuse emissions from raw material and product handling and processing. Due to the differences in the characteristics of Mn-bearing particles found in the different matrices, further studies on the potential toxicity and health effects of these particles should be done, especially in relation with the small and spherical particles present in PM10, which are expected to be more problematic.This work has been financially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) through the Project CTM2013-43904R. Ana HernĂĄndez-PellĂłn thanks the Ministry of Economy and Competitiveness (MINECO) for the FPI grant awarded, BES-2014-068790

    Human exposure to hydrogen sulphide concentrations near wastewater treatment plants

    Get PDF
    The hydrogen sulphide (H2S) levels from wastewater treatment plants (WWTPs) in Curitiba, Brazil have been quantified for the first time. H2S generated by anaerobic decomposition of organic matter in WWTPs is a cause for concern because it is an air pollutant, which can cause eye and respiratory irritation, headaches, and nausea. Considering the requirement for WWTPs in all communities, it is necessary to assess the concentrations and effects of gases such as H2S on populations living and/or working near WWTPs. The primary objective of this study was to evaluate the indoor and outdoor concentration of H2S in the neighbourhood of two WWTPs located in Curitiba, as well as its human health impacts. Between August 2013 and March 2014 eight sampling campaigns were performed using passive samplers and the analyses were carried out by spectrophotometry, presenting mean concentrations ranging from 0.14 to 32 ÎŒg m− 3. Eleven points at WWTP-A reported H2S average concentrations above the WHO recommendation of 10 ÎŒg m− 3, and 15 points above the US EPA guideline of 2 ÎŒg m− 3. At WWTP-B the H2S concentration was above US EPA guideline at all the sampling points. The I/O ratio on the different sampling sites showed accumulation of indoor H2S in some instances and result in exacerbating the exposure of the residents. The highest H2S concentrations were recorded during the summer in houses located closest to the sewage treatment stations, and towards the main wind direction, showing the importance of these factors when planning a WWTP. Lifetime risk assessments of hydrogen sulphide exposure showed a significant non-carcinogenic adverse health risk for local residents and workers, especially those close to anaerobic WWTPs. The data indicated that WWTPs operated under these conditions should be recognized as a significant air pollution source, putting local populations at risk
    • 

    corecore