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Abstract 

 

Ferroalloy production can release a number of metals into the environment, of which 

manganese (Mn) is of major concern. Other elements include lead, iron, zinc, copper, chromium, 

and cadmium. Manganese exposure derived from settled dust and suspended aerosols can cause a 

variety of adverse neurological effects to chronically exposed individuals. To better estimate the 

current levels of exposure, this study quantified metal levels in dust collected inside homes 

(n=85), outside homes (n=81), in attics (n=6), and in surface soil (n=252) in an area with historic 

ferroalloy production. Mean Mn concentrations in soil (4600 µg/g) and indoor dust (870 µg/g) 

collected within 0.5 km of a plant exceeded levels previously found in suburban and urban areas, 

but did decrease outside 1.0 km the upper end of background concentrations. Mn concentrations 

in attic dust were approximately 120 times larger than other indoor dust levels, consistent with 

historical emissions that yielded high airborne concentrations in the region. Considering the 

potential health effects that are associated with chronic manganese exposure, remediation of soil 

near the plants and frequent, on-going hygiene indoors may decrease residential exposure and the 

likelihood of adverse health effects. 
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Introduction 

Ferroalloys have been used for over a century in the manufacture of steel. Production at 

these facilities can release large amounts of trace metals into the atmosphere which has the 

potential to settle in outlying residential areas (1, 2). Even after production at these plants has 

ceased, populations living in close proximity can be exposed to contaminated settled dust and 

soil through multiple pathways including inhalation of re-suspended particles and incidental 

ingestion (3-5).  

Although essential for human health, frequent exposure to high concentrations of 

manganese (Mn) can often cause a variety of adverse health effects in occupationally and/or 

environmentally exposed populations (6-18).  In occupational settings, where workers are 

exposed to large sustained concentrations of Mn, individuals can develop manganism, which is 

characterized by impaired motor function, extra-pyramidal movements, propensity to fall 

backwards, and erratic behavior. Although similar to Parkinsonism, the classical manganism is a 

separate and distinct, Parkinson-like disease (7, 8, 12, 17, 19, 20).  Less pronounced neurological 

effects have also been observed in occupational settings at lower exposure levels. Workers at a 

ferromanganese and silicomanganese plants had significantly altered mood disturbances 

including tension, anger, and confusion, as well decreased motor function relative to workers 

with no occupational manganese exposure (14). Individuals employed at an alkaline battery 

factory, exposed occupationally to Mn, also exhibited reduced visual reaction time, hand-eye 

coordination, and hand steadiness compared to a control group (16). 

Recently, researchers have begun to document similar health effects in populations with 

chronic environmental Mn exposure. Lifetime exposure to low levels of manganese is shown to 

increase the frequency of Parkinsonism in exposed populations.  Lucchini et al. (9) determined 
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the prevalence of Parkinsonian cases in communities downwind from three former 

ferromanganese plants located in Valcamonica, Italy. Significantly higher standardized 

prevalence rates of Parkinsonism (492/100,000; 95% CI: 442.80–541.20) were found in 

communities with historic Mn exposure compared to communities with lower exposure levels in 

the same Province of Brescia, Italy (321/100,000; 95% CI 308.80–333.20). The prevalence rates 

of Parkinsonism were positively associated with the levels of manganese in deposited dust 

sampled in outdoor public locations (9).  Adolescents (11-14 years) and elderly recruited from 

the same areas showed significant deficits in motor coordination, hand dexterity, and odor 

identification compared to individual residing in reference areas (10). The impairment of 

olfactory and motor functions was associated with the concentration of manganese in 

environmental media and biomarkers of exposure (21, 22). 

Young children are at an increased risk of settled dust exposure due to their propensity 

for hand-to-mouth contact as well as increased time spent on the floor were settled dust loading 

can be high (15).  Mn levels found in hair samples collected from children (1–10 years) living in 

close proximity to a ferromanganese plant were an order of magnitude larger than children from 

a reference area (2). Studies have found a significant correlation between elevated levels of Mn 

in hair samples and IQ deficits in children living within a 2-km radius from an active 

ferromanganese alloy plant (13) and a hazardous waste site (18).  

The objective of this study was to characterize manganese and other trace metals in soil 

and dust samples in Valcamonica, Italy which has a history of ferroalloy production. Three 

different ferroalloy manufacturing plants operated for almost a century in the region. In 2001 

operations at all the plants ceased and no alloy production has occurred in the area since that 

time. Here, we examine the impact of these operations on contamination levels in soil, and the 
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extent to which household dusts, a significant potential pathway of exposure, are currently 

contaminated by these historical Mn sources. 

Methods  

Study Site 

This study was conducted in the Valcamonica region of Northern Italy (Figure 1). 

Valcamonica is a pre-Alpine glacial valley that runs for about 80 km in the northeast-southwest 

direction. The valley has an average width of about 3 km and steep sidewalls that contain 

atmospheric contamination. Wind speed and direction fluctuate diurnally throughout the year in 

response to thermal expansion and contraction of trapped air. During the day the wind blows up 

the valley at an average speed of 1.3 m/s, while at night the wind blows down the valley at an 

average speed of 1.3 m/s.  Generally, at the ferroalloy plants, there were no daily shutdowns and 

production continued 24 hours a day. Therefore, depending on the time of day, daily atmospheric 

emissions from the plants oscillated along the valley floor.  

The three ferromanganese plants are about 12 km from each other and are located in the 

towns of Sellero (population 1500) - operated from 1950 to 1985; Breno (population 5000) - 

operated from 1902 to 2001; and Darfo (population 13,200) - operated from 1930 to 1995. The 

town of Breno, home to the largest plant, had approximately 200 workers in its last decades of 

operation. Darfo employed about 100 workers, whereas Sellero had the smallest facility. 

Sample collection 

Indoor (n=85) and outdoor dust (n=81) samples were collected at 87 homes located in the 

Valcamonica valley. Sampling was carried out as part of a larger children, workers, elderly, and 

Parkinsonian patients’ health study; subject recruitment strategies have been previously 
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published (10). Briefly, households were enrolled through the public school system according to 

a community-based participatory approach publicized by the local media and conferences. 

Households with children (age 11-14) were included in the study if the participating child was 

born in the study area and lived there since birth and their mother lived in the area during 

pregnancy.  Children were excluded if they were diagnosed with a pathological condition 

potentially affecting neuro-development, took any medications for neuropsychological 

conditions, had clinically diagnosed motor deficits of hand and fingers, clinically diagnosed 

cognitive impairment and behavioral manifestations, or visual impairments not adequately 

corrected.  

Surface area measurements were recorded for all locations in which dust was collected. 

Indoor samples were collected at a minimum of three different locations throughout the home, 

except the floor, that were observed to have accumulated settled dust (e.g. indoors on tops of tall 

furniture, cabinets, pipes, shelves, and door frames). Indoor dust samples were collected with 

either a cyclone vacuum cleaner that collected dust into a plastic sample jar or a clean sampling 

brush. Outdoor dust was collected with a clean brush from window ledges, railings, and wooden 

beams that were protected from rain by the overhangs of house. Additionally, a pilot sampling of 

attic dust was completed and analyzed for metals for a small number of homes (n=6) in the 

Breno region.  

Household dust samples (excluding attic dust) were shipped to the trace metal analytical 

facility at the University of California, Santa Cruz for analyses. Briefly, approximately 100 mg 

dust was leached in 1 mL trace metal grade 7.5 N HNO3 at 80°C  for 4 hours, diluted to 7 mL 

with Milli-Q water and centrifuged at 3000 x g for 20 minutes for analysis by inductively 

coupled plasma optical emission spectroscopy (Perkin-Elmer Optima 4300 DV Series).  The 
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analytical detection limits for Mn, Al (aluminum), Cd (cadmium), Cr (chromium), Cu (copper), 

Fe (iron), Pb (lead) and Zn (Zinc) were 1.3, 26, 1.6, 2.7, 2.6, 22, 35, and 5.5 ng/mL, respectively.  

The procedural reproducibility was ~ 5% RSD or better for all elements measured based on 

triplicate processing of house dust samples and certified reference material (CRM) BCR – 483  

(European Commission, Joint Research Centre, Institute for Reference Materials and 

Measurements). The analytical accuracy ranged from ~95 – 110% of expected (i.e., indicative) 

values, based on analyses of CRM BCR-483. 

Metal concentrations in soil were quantified at the sampling site with a portable X-ray 

fluorescence (XRF) instrument (Thermo Scientific Niton, model XL3t). Measurements were 

taken outside a subset of homes (n=48) were dust samples were collected and in a strategic grid 

throughout the Valcamonica area (n=204). Two to four readings per-site were taken and 

averaged to obtain a concentration. The instrument was internally calibrated prior to each usage. 

Additionally, a series of soil standards reference materials (NIST 2780, 2709a) produced by the 

U.S. National Institute of Standards and Technology (NIST) were measured prior to each 

sampling session with the XRF.  

Latitude and longitude were recorded for all environmental measurement locations 

(GlobalSat Bluetooth GPS Receiver BT - 338). The distance from each sampling site was then 

calculated for each one of the three ferromanganese plants based on GPS coordinates. Due to the 

limited transport from each site and the presence of near background Mn levels between them, 

the plant with the closest distance to the sample was considered as the source of trace metal 

deposition for that location, 
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To evaluate factors that may affect metal concentrations in settled dust traffic data, 

smoking habits inside the house, as well as socioeconomic status were collected at the time of 

sampling. Traffic outside the household was rated on a four point scale (absent, low, medium, 

high) based on traffic density and socioeconomic status (SES) was rated on a three point scale 

(high, medium, low). Parental education and occupational level were used to calculate SES. 

Education was divided in three levels: low (elementary and junior high school), medium (senior 

high school) and high (degree and post-degree). Occupations were grouped in three categories: 

low (skilled/unskilled worker, hospital ancillaries, etc.) middle (clerical workers, teachers, 

educators, nurses, shop assistant, etc.) and high (engineer, entrepreneur, tradesman, craftsman, 

etc.). The combination of education and occupation levels was used to obtain three levels of the 

SES index. Smoking status was classified as either yes or no if either the mother or father 

identified themselves as a current smoker. 

Sampling seasons were assigned based on the sample date: winter was defined as 

December, January, and February; spring was March, April, and May; summer was June, July, 

and August; and autumn was September, October, and November. 

Statistical Analysis 

Statistical analyses were performed using R version 3.0.2. Descriptive statistics were 

determined, including mean, standard deviation, geometric mean, and empirical quartiles. Metal 

data distribution was, as expected, highly skewed. Following the Box-Cox approach to data 

transformation we used a logarithmic transformation of the observed concentrations of metals for 

the multivariate analyses (23). Spearman’s correlation coefficients (ρ) were calculated on 

untransformed metal concentrations and linear distance to the nearest ferromanganese plant. 
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Generalized Additive Models (GAM) were used to examine the relationships between 

Mn concentration in dust (both indoors and outdoors) and soil and the distance from the nearest 

ferromanganese plant (Breno, Darfo, and Sellero), correcting the estimates for socioeconomic 

status, traffic, smoking, latitude, longitude, elevation, and season (24).GAM models are similar 

to linear (or generalized linear) models but allow to relax the assumption of linearity between the 

response variable and (some of) the covariates, using a smooth function of continuous covariates 

as a linear predictor. Within the GAM framework we studied the functional form of the 

relationship between Mn concentrations in dust and soil and distance to the nearest plant, using a 

stratified GAM to detect if the shape of Mn to distance relationship was different for each area, 

i.e. allowing the smoothing part of the GAM to be different for each plant neighborhood. The 

degree of smoothing was determined via generalized cross validation and we obtained the most 

parsimonious model using a stepwise approach, according to the Akaike's Information Criterion 

(AIC) guidance. 

Results 

Descriptive statistics including mean, geometric mean, standard deviation, percentiles, 

and range for soil, indoor dust, and outdoor dust are shown in Table 1. Fe and Al were found in 

the greatest abundance of any of the metals quantified while Cr, Cd, and Pb concentrations were 

the lowest. Mean indoor dust concentrations of Mn (410 µg/g) were an order of magnitude 

smaller compared to soil (2500 µg/g) and outdoor dust (1300 µg/g) concentrations. Conversely, 

Cu, Pb, and Zn were lower in soil compared to indoor and outdoor dust.  The mean ratio of 

indoor dust concentrations to soil concentrations were 0.37 for Mn, 4.9 for Cu, 0.26 for Fe, 2.7 

for Pb, and 4.8 for Zn. Mn concentrations in soil were varied with a coefficient of variation (CV) 

of 192% and a range spanning two orders of magnitude (190-47000 µg/g). The variability of Mn 
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in indoor and outdoor dust samples was less pronounced with a CV of 83% and 108%, 

respectively.  

The distance from the ferroalloy plant was the single largest determinant of Mn 

concentrations in soil (ρ=-0.27, p<0.001) and indoor dust (ρ =-0.26 p=0.018). For metal levels in 

soil, a significant negative correlation was observed between Pb (ρ =-0.22, p<0.001) and Zn (ρ=-

0.23, p<0.001) and distance to nearest plant.  No significant correlations were found in outdoor 

dust concentrations and plant distance, with Mn (ρ =-0.17, p=0.122) having a marginal 

correlation.  

Distance was stratified into four categories for further analysis (Table 3). Mean Mn levels 

in soil were approximately five times higher at a distance of <0.5 km (4600 µg/g) compared to 

measurements taken at 1.0 km or farther (1000 µg/g). Indoor dust concentrations were 2.5 times 

higher <0.5 km (870 µg/g) compared to ≥1.5 km (340 µg/g). Concentrations of Mn in outdoor 

dust at <1.0 km (2100 µg/g) were approximately double compared to concentrations at distances 

≥1.0 km (1200 µg/g).  

Levels of Pb (100 µg/g) and Zn (520 µg/g) were increased in soil samples collected 

within 0.5 km of the plants compared to samples collected beyond 1.0 km (41 µg/g and 150 

µg/g, respectively). No trends in Pb and Zn were observed in indoor or outdoor settled dust 

collected at the different distance strata. However, far fewer indoor (n=7) and outdoor (n=6) dust 

samples were collected than soil samples (n=88) in areas <0.5 km from the plants. The lack of 

obvious relationships between Pb and Zn dust concentrations and distance to the plant may 

reflect limited sampling, particularly near the plants, where contamination could be highest but 

also most variable. 
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The effect of three different ferromanganese plants (Breno, Sellero and Darfo) on Mn 

concentrations in soil was examined for the using GAMs. Distance from the nearest 

ferromanganese plant (m), plant (categorical), season (winter, spring, summer autumn), 

geographic localization (latitude and longitude degrees), and altitude (m) were analyzed as 

possible explanatory variables. In the final model only the distance from the nearest plant and the 

geographic localization were found to be significant predictors of soil Mn concentrations. The 

shape of the soil Mn concentrations to distance relationship was similar for the three areas 

(Figure 2). Of the three plants Mn levels in Darfo were the lowest closest to the plant, while 

levels in Breno were the highest. Mean Mn concentrations and standard deviation in soil within 

0.5 km of the Breno plant were 8000±10000 µg/g compared to 2600±4300 at the other sites. 

Levels outside 2.0 km were comparable in Breno and Sellero. 

Indoor and outdoor dust explanatory variables that were evaluated using GAM analyses 

included traffic, distance to the ferroalloy plant, SES, geographic localization, elevation, and 

season. One participant indicated that they smoked inside the home, therefore smoking was 

dropped from analysis. Additionally, only two indoor measurements were recorded near the 

Darfo facility, these measurements were not included in the analysis. Only distance from the 

nearest plant and the geographic localization were found to be significant predictors of indoor 

and outdoor Mn concentrations in the final model. As with the soil concentrations, indoor Mn 

dust levels in Breno were elevated closest to the plant but leveled off at approximately 1 to 1.5 

km (Figure 3).  

Attic dust accumulates undisturbed slowly over time, and thus represents an integrated 

measure of exposure. Metal levels were measured in the attic dust samples in a small subset of 

homes (n=6), in the Breno region (Table 4). None of the homes sampled were within 0.5 km of a 
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plant, yet Mn concentrations were high and variable, with a mean of 46000 µg/g and a standard 

deviation of 45000 µg/g. Dust collected in one attic had Mn concentrations as high as 130000 

µg/g. With the exception of Cu, metal concentrations in attic dust were 3.6 to 115 times higher 

than those measured in indoor dust from Breno. Concentrations in the attic were also elevated 

compared to outdoor dust samples with a 2.3 to 32 times increase. 

Discussion 

The objective of this analysis was to characterize Mn concentrations in soil and dust in 

areas with historic ferroalloy production facilities. Although the ferromanganese production at 

these facilities ceased more than a decade ago, individuals living in this area would still become 

exposed to Mn through the re-suspension of contaminated soil and dust (3, 4). Additionally, 

children may be at higher risk of exposure through inadvertent or intentional ingestion of soil 

and dust (15). In fact, several playgrounds, soccer fields, and other outdoor recreational areas are 

located around the old plant sites. Mean soil concentrations within 0.5 km of all ferroalloy plants 

were 4600 ± 7400 µg/g which is one to two orders above the average range of Mn found in 

typical uncontaminated soil (40-900 µg/g) (25). However, soil concentration decreased over 

relatively short distances, with concentrations approaching background within 1.0 km. We 

attributed the drop-off in Mn levels to the rapid fallout of emissions of larger particles in the 

aerosol and light prevailing winds.  

Mn concentrations in close proximity to the Breno plant were higher in soil than the other 

two plants. The Breno facility was the largest of the three plants and was the last to cease 

operations. Outside a soccer field, where community members regularly congregate in Breno, 

concentrations were as high as 47000 µg/g (Figure 4).  Concentrations of Mn in soil within 0.5 
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km (8000±10000 µg/g) of the Breno plant were similar to those adjacent to a closed 

ferromanganese plant outside of Montreal, Canada (6232±5100 µg/g). At 800m from the 

Montreal site, atmospheric concentrations of respirable Mn (0.13 ±0.03 µg/m
3
) were 

approximately 3 times higher than the US Environmental Protection Agency (EPA) reference 

concentration (0.05 µg/m
3
). The authors inferred that settled dust was becoming re-suspended 

and possibly impacting the air surrounding the community a decade after the plant was closed 

(1).  Re-suspension of Mn contaminated soil and settled dust may also serve as an important 

exposure pathway in Valcamonica. This is a concern as Mn is more efficiently adsorbed by the 

body via inhalation compared to other routes of exposure (26).  

Mn levels found in indoor dust were also increased in residences located near the closed 

ferroalloy facilities, likely the result of track-in or penetration from outdoors. Average 

concentrations for homes within 0.5 km of a plant (870 µg/g) were 2.4 times greater than levels 

found in homes located 1.0 km from a plant (370 µg/g). The highest indoor level (2100 µg/g) 

was observed at a home located next to (0.13 km) the plant in Sellero. This value is similar to 

levels detected in Mn contaminated soil found near the plant. Indoor Mn levels within 0.5 km of 

a plant were 3 to 11 times higher in the Valcamonica region compared to concentrations found in 

previous urban and suburban studies (27-29). Rasmussen et al. (28) sampled 48 homes in 

Ottawa, Canada and found mean manganese concentrations of 269 µg/g and a maximum 

concentration of 423 µg/g.  Mean concentrations found in Sydney, Australia (n=82) were 76 with 

a maximum concentration of 624 µg/g (27). Residents living in the Valcamonica valley, 

especially in the Breno area, should perform a thorough cleanup indoors in order to decrease Mn 

exposure. 
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Distance to the nearest plant and geographic localization predicted 43% of the variability 

in indoor Mn concentrations. However, other factors that could affect settled dust concentrations 

inside the home include cigarette smoke (30), motor vehicle traffic (31), low socioeconomic 

status (27),  and home cleanliness (29, 32). Except for one family, all participants identified as 

not smoking inside the home. In a generalized additive model, which included distance to a 

ferromanganese plant and geographic localization, SES and traffic were highly non-significant. 

Although it appears that distance to the plant and geographic localization were the largest 

contributor to indoor Mn levels, other unmeasured variables such as hygiene, indoor air 

exchange rates, and heating may have attenuated the effect.   

Since attics are rarely cleaned they have served as a historical record of past air pollution 

deposition (33). Mn concentrations in the attic were approximately 120 times higher than mean 

indoor dust samples collected in the Breno region.  The high attic dust Mn concentrations likely 

reflect the high levels of Mn enrichment in aerosols produced while plants were still operational. 

Given that it is also likely that the aerosol concentrations were higher during the period of active 

emissions, it is also likely that respirable Mn levels were higher a decade ago than they are 

today.  Despite this progress, indoor Mn concentrations are still elevated compared to urban and 

suburban areas, which shows the persistent effect of metal contamination in the environment.  

Italian regulatory agencies do not have any contamination guidelines for manganese. The 

US EPA has derived a reference dose of 0.14 mg/kg-day for chronic ingestion of Mn (36). 

Assuming a worst case exposure scenario, living within 0.5 km of a plant in Breno, a 10 kg child 

would be over-exposed to Mn ingesting 175 mg of contaminated soil per day. This is neglecting 

Mn intake from inhalation of re-suspended dust, possible well water contamination, and 

ingestion of indoor dust which, depending on the residential location, may be on the same order 
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of magnitude as soil levels. Notably, motor and odor deficits have been observed in the children 

living in households located in this area with Mn levels in soil above 1000 µg/g (10). Given the 

distribution of Mn concentrations observed in soils, motor and olfactory deficits are probably 

highly heterogeneous and localized in the vicinity of the plant.  Remediation is a potential means 

of decreasing Mn exposure. These data suggest that remediation should be focused within 1.5 km 

of plants, particularly in the Breno area where contamination is highest, and include a means of 

decreasing the re-suspension of soil particles. Efforts to convert Mn in contaminated source areas 

to less toxic forms more indicative of background also would be useful. 

Conclusions 

Although production of ferromanganese ceased more than a decade ago, Mn still persists 

in the environment in the Valcamonica region. Residents in this area are exposed to increased 

levels of Mn in soil and indoor settled dust compared to urban and suburban populations. Mn 

concentrations were significantly elevated in soil and indoor settled dust samples collected 

within 0.5 km radius but decreased to around background levels at 1.0 km from the plant. In an 

effort to characterize historical exposure, dust samples were collected in the attic of a small 

number of homes.  Mn concentrations were approximately 120 times higher than mean indoor 

dust samples, which is likely the result of high levels of Mn enrichment in aerosols produced 

while plants were still operational. Considering the potential health effects that are associated 

with chronic manganese exposure, the levels in the soil near the plants must be remediated to 

decrease residential exposure and decrease the likelihood of adverse health effects. 
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Table 1: Mean concentration, standard deviation, geometric mean (GM), percentiles, and range 

of metals in indoor dust, outdoor dust, and soil  samples 

Indoor dust (µg/g) 

Metal N Mean ± SD GM 
25

th
  

percentile 

75
th

  

percentile 
Range 

Al 85 4600 ± 2200 4100 3000 5700 680 – 14000 

Cd 85 2.5 ± 5.0 1.6 1.1 2.4 0 – 40 

Cr 85 47 ± 30 43 33 56 19 - 260 

Cu 85 290 ± 450 200 140 270 38 – 900 

Fe 85 5900 ± 3300 5000 3600 7500 730 – 19000 

Mn 85 410 ± 340 330 230 460 60 – 2100 

Pb 85 100 ± 150 62 41 88 1.8 – 1000 

Zn 85 640 ± 790 510 360 670 130 – 7200 

Outdoor dust (µg/g) 

Metal N Mean ± SD GM 
25

th
  

percentile 

75
th

  

percentile 
Range 

Al 81 10000 ± 2500 10000 8400 12000 5100 - 19000 

Cd 81 2.3 ± 2.3 1.9 1.5 2.1 0.8 - 16 

Cr 81 71 ± 58 59 41 80 25 - 410 

Cu 81 500 ± 1500 240 150 280 53 - 12000 

Fe 81 21000 ± 15000 19000 15000 24000 6900 - 140000 

Mn 81 1300 ± 1400 1000 680 1300 410 - 8200 

Pb 81 200 ± 400 120 73 160 32 - 3200 

Zn 81 1600 ± 6000 700 470 800 200 - 53000 

Soil (µg/g) 

Metal N Mean ± SD GM 
25

th
  

percentile 

75
th

  

percentile 
Range 

Cu 252 61 ± 52 50 36 71 0 - 610 

Fe 252 21000 ± 8200 20000 16000 27000 4900 - 49000 

Mn 252 2500 ± 4800 1300 700 1900 190 - 47000 

Pb 251 68 ± 90 46 28 64 9.0 – 630 

Zn 252 290 ± 570 180 100 250 42 - 5500 
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Table 2: Spearman’s correlations between metal concentration and distance to nearest ferroalloy 

plant 

  Soil  Indoor dust  Outdoor dust 

Metal 
 Correlation Coefficients 

(p) 

 Correlation Coefficients 

(p) 

 Correlation Coefficients 

(p) 

Al  *  -0.11 (0.309)  0.04 (0.736) 

Cd  *  -0.06 (0.590)  0.05 (0.658) 

Cr  *  0.05(0.653)  -0.19 (0.083) 

Cu  0.12 (0.056)  -0.02 (0.890)  -0.05 (0.627) 

Fe  0.04 (0.490)  -0.01 (0.967)  -0.01 (0.896) 

Mn  -0.27 (<0.001)  -0.26 (0.018)  -0.17 (0.122) 

Pb  -0.22 (<0.001)  0.01 (0.940)  0.10 (0.368) 

Zn  -0.23 (<0.001)  0.03 (0.778)  0.09 (0.407) 
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Table 3: Mean Mn, Pb, and Zn concentration (µg/g) and standard deviation stratified by distance to the nearest ferroalloy plant 

  Soil  Indoor  Outdoor 

Distance 

(km) 

 

N 

Mn Pb Zn  

N 

Mn Pb Zn  

N 

Mn Pb Zn 

 Mean ± 

SD 

Mean ± 

SD 

Mean ± 

SD 

 Mean ± 

SD 

Mean ± 

SD 

Mean ± 

SD 

 Mean ± 

SD 

Mean ± 

SD 

Mean ± 

SD 

<0.5 
 

88 
4600 ± 

7400 

100 ± 

130 

520 ± 

900 

 
7 

870 ± 

720 

57 ± 

 24 

550 ± 

300 

 
6 

2000 ± 

2300 

120 ± 

92 

710 ± 

300 

≥0.5 - <1.0 
 

45 
2500 ± 

2900 

64 ±  

81 

180 ± 

140 

 
9 

500 ± 

340 

190 ± 

320 

1300 ± 

2200 

 
8 

2100 ± 

2400 

300 ± 

640 

710 ± 

500 

≥1.0 - <1.5 
 

29 
1000 ± 

600 

41 ±  

17 

150 ± 

62 

 
9 

370 ± 

230 

68 ±  

25 

450 ± 

190 

 
8 

1200 ± 

410 

530 ± 

1100 

1800 ± 

2900 

≥1.5 
 

90 
1000 ± 

610 

43 ±  

34 

160 ± 

91 

 
60 

340 ± 

240 

97 ± 

130 

580 ± 

380 

 
59 

1200 ± 

1200 

140 ± 

110 

1700 ± 

6900 
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Table 4: Mean concentration (µg/g), geometric mean (GM), standard deviation, and range of 

metals in attic dust samples 

Metal N Mean ± SD GM Range 

Cu 6 270 ± 140 230 90 - 420 

Fe 6 65000 ± 23000 62000 39000 - 11000 

Mn 6 46000 ± 45000 29000 7700 - 130000 

Pb 6 440 ± 230 390 180 - 750 

Zn 6 2000 ± 780 1900 980 - 3200 
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Figure 1: Map of the Valcamonica Valley and three ferromanganese plants 
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Figure 2: Regression analysis of soil Mn concentrations stratified by different towns 
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Figure 3: Regression analysis of indoor Mn dust concentrations stratified by different towns 
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Figure 4: Mn concentrations in the soil near the Breno plant 

 

 

 

 

 


