
Accepted Manuscript

Characterization of manganese-bearing particles in the vicinities of a manganese 
alloy plant

Ana Hernández-Pellón, Ignacio Fernández-Olmo, Frédéric Ledoux, Lucie Courcot, 
Dominique Courcot

PII: S0045-6535(17)30234-5

DOI: 10.1016/j.chemosphere.2017.02.056

Reference: CHEM 18819

To appear in: Chemosphere

Received Date: 30 December 2016

Revised Date: 08 February 2017

Accepted Date: 09 February 2017

Please cite this article as: Ana Hernández-Pellón, Ignacio Fernández-Olmo, Frédéric Ledoux, Lucie 
Courcot, Dominique Courcot, Characterization of manganese-bearing particles in the vicinities of a 
manganese alloy plant,  (2017), doi: 10.1016/j.chemosphere.2017.02.056Chemosphere

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to 
our customers we are providing this early version of the manuscript. The manuscript will undergo 
copyediting, typesetting, and review of the resulting proof before it is published in its final form. 
Please note that during the production process errors may be discovered which could affect the 
content, and all legal disclaimers that apply to the journal pertain.



ACCEPTED MANUSCRIPT

Highlights

 Most of the particles collected in an urban area near a Mn alloy plant contain Mn
 PM10 is mainly composed of Si-Mn particles with spherical shapes and small sizes
 Mn-bearing particles in deposition samples are mostly attributed to alloys and slags
 Mn solubility is expected to be higher in PM10 compared to deposition samples
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17 Abstract

18 Numerous studies have associated air manganese (Mn) exposure with negative health effects, 

19 primarily neurotoxic disorders. Despite there is not a specific European regulation, institutions 

20 such as the World Health Organization (WHO) have proposed an annual average guideline value 

21 of 150 ng/m3. Bioaccessibility and toxicity mechanisms of Mn remain unclear, however it is 

22 generally agreed that adverse health effects are strongly linked to particle size and morphology, 

23 chemical composition and oxidation state. This study aims to deepen the understanding of the 

24 physico-chemical characteristics of PM10 and deposition samples collected in an urban area in the 

25 proximities of a ferromanganese alloy plant. Total Mn content was determined by ICP-MS after 

26 a microwave-assisted acid digestion. The size, morphology and chemical composition of 

27 individual particles were studied by SEM-EDX. XRD was used to identify the major crystalline 

28 phases. Most of the particles observed by SEM-EDX contain Mn. 60% of Mn-PM10 particles were 

29 spheres of small size and were attributed to condensation processes at the smelting unit. Mn-

30 bearing particles present in deposition were characterized by irregular shapes and bigger sizes, 

31 most of them consisting of SiMn slags and Mn ores and alloys, and attributed to diffuse emissions 

32 from raw material and product handling and processing. Due to the differences in the 

33 characteristics of Mn-bearing particles found in the different matrices, further studies on the 
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34 potential toxicity and health effects of these particles should be done, especially in relation with 

35 the small and spherical particles present in PM10, which are expected to be more problematic. 

36 Keywords

37 Manganese, SEM-EDX, XRD, ferroalloy plant, PM10, deposition 

38

39 1. Introduction

40 Manganese (Mn) is a trace element considered essential to human health. Due to its catalytic 

41 and regulatory function, it plays an important role in several enzyme systems, being therefore 

42 required for a wide variety of physiological processes. It is necessary for the metabolic activity, 

43 skeletal development, as well as for the maintenance of the nervous and immune systems 

44 (Santamaria, 2008). In addition, it contributes to a normal reproductive hormone function and to 

45 the prevention of cellular oxidative stress (Freeland-Graves et al., 2015; Keen et al., 2000). 

46 Although Mn, as a nutrient, is vital for the human body, it can be toxic as a result of overexposure. 

47 Mn toxicity to humans by inhalation has been widely reported in comparison with other routes 

48 of exposure (ATSDR, 2012; WHO, 2000), mainly linked to neurological problems. Chronical 

49 occupational exposure can lead to the development of manganism, with some general 

50 resemblance to Parkinson’s disease (Flynn and Susi, 2009; Kwakye et al., 2015; Park, 2013). 

51 Whereas the impacts of Mn exposure in human health have been extensively established in 

52 relation with workplaces (Crossgrove and Zheng, 2004), there has only been a growing interest 

53 in the last decade about the consequences of Mn chronic exposure in the overall population, 

54 especially in susceptible groups like children (Carvalho et al., 2014; Riojas-Rodríguez et al., 2010; 

55 Rodríguez-Barranco et al., 2013). In this regard, recent studies suggest that ambient air Mn 

56 exposure may also be associated with neurotoxic disorders, including motor and cognitive deficits 

57 (Chen et al., 2016; Lucchini et al., 2012; Menezes-Filho et al., 2011; Rodríguez-Agudelo et al., 

58 2006; Roels et al. 2012). Even though negative health effects as a consequence of airborne Mn 

59 overexposure have been pointed out, there is no specific European regulation that establishes limit 
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60 values for Mn in air. Nevertheless, the World Health Organization (WHO) has proposed an annual 

61 average guideline value of 150 ng Mn/m3. 

62 Mn is an element present in several environmental matrices, however, high concentrations in 

63 air are due to anthropogenic sources, one of the most important being the ferromanganese alloy 

64 production. According to the WHO criteria, exceedances of Mn concentrations in air have been 

65 widely reported in areas close to Mn alloy plants, pointing out that even when PM10 levels fulfil 

66 the European regulatory limits, Mn should be a cause of concern in locations influenced by the 

67 emission from this activity. For instance, Haynes et al. (2010) have reported an annual average 

68 concentration of Mn of 203 ng/m3 at approximately 4.5 miles to the north/north-east of a 

69 ferromanganese refinery located in the Marietta community (14,515 inhabitants, USA). Also, an 

70 average Mn concentration of 7,560 ng/m3 in dust collected by global filtration have been reported 

71 by Ledoux et al. (2006) in the vicinities of a ferromanganese metallurgy plant located in 

72 Boulogne-sur-Mer agglomeration (120,000 inhabitants, France). 

73 Mn levels in air reach 4-23 ng/m3 in several urban background areas in Spain (Querol et al., 

74 2007), nevertheless annual average concentrations above the WHO guideline have been 

75 repeatedly reported in the Region of Cantabria, northern Spain. In Santander, capital of the region 

76 (174,000 inhabitants), located 7 km-NE of a ferromanganese alloy plant, an annual average value 

77 of 166 ng Mn/m3 was reported in 2007 (Moreno et al., 2011). Also in 2005 and 2009, annual 

78 average levels of 781 ng Mn/m3 (CIMA, 2006) and 1072 ng Mn/m3 (CIMA, 2010) respectively, 

79 were obtained in the area of Maliaño, a small town with around 10,000 inhabitants where the 

80 ferroalloy plant is located. Even though the application of corrective measures in the plant in 2008 

81 led to an improvement of Mn air concentrations in Santander, where mean values of 49.1 ng 

82 Mn/m3 (Arruti et al., 2010) and 31.5 ng Mn/m3 (Ruiz et al., 2014) were reported in 2008 and 2009, 

83 respectively, Mn levels in 2015 still exceeded the WHO recommendation in some areas of 

84 Maliaño town, with monthly mean values up to 713.9 ng/m3 and reaching 3200 ng/m3 daily Mn 

85 concentrations (Hernández-Pellón and Fernández-Olmo, 2016). 

86 Mn emissions to the atmosphere sourcing from ferroalloy plants can exist as aerosols or 

87 suspended particulate matter (ATSDR, 2012). Smallest particles will remain suspended for long 
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88 periods and then, together with bigger particles, will be deposited by dry or wet deposition. 

89 Particulate matter is generated from several activities during ferroalloy production, including raw 

90 material handling, sintering, smelting and tapping, casting and product handling (Davourie et al., 

91 2016). Mn ores can be directly introduced into the electrical furnaces or agglomerated with other 

92 raw materials such as fluxes and coal in a sintering unit. Figure 1 shows the most common point 

93 and fugitive sources of particulate matter (PM) and therefore, potential sources of Mn, in a typical 

94 Mn ferroalloy production plant without sintering process. The variety of point and diffuse Mn 

95 sources in a ferroalloy plant shown in Figure 1 may lead to the emission of a mixture of Mn-

96 bearing particles with different physico-chemical characteristics.

97 Even though more efforts should be done in establishing Mn bioaccessibility and toxicity 

98 mechanisms (Santamaria, 2008), it is generally agreed that they are strongly linked to particle size 

99 and morphology, chemical composition and oxidation state (Majestic et al., 2007). The size 

100 distribution of Mn-bearing particles will determine their capability of passing the larynx (thoracic 

101 fraction) and ciliated airways (respirable fraction) during inhalation, and therefore could 

102 determine their potential health effects. Also, the particle size distribution within the respirable 

103 aerosol fraction may have large consequences for the pulmonary Mn absorption (Ellingsen et al., 

104 2013). The predominant oxidation states of Mn found in the inhalable aerosol fraction in FeMn 

105 and SiMn plants are Mn0 and Mn2+; however, Mn3+ and Mn4+ have also been previously identified 

106 (Thomassen et al., 2001). In addition, particle solubility is important for the systemic uptake of 

107 Mn after inhalation. In this regard, a greater association has been found between the more soluble 

108 Mn compounds and their presence in biological samples, with respect to insoluble Mn compounds 

109 (Ellingsen et al., 2003). Thus, taking into account the variety of emission sources from ferroalloy 

110 plants, the study of the physico-chemical characteristics of Mn-bearing particles is essential to 

111 better assess their potential health effects.

112 In the last years, some studies have focused on the assessment of PM toxicity based on its 

113 physico-chemical characteristics (Dieme et al., 2012; Megido et al., 2016; Perrone et al., 2010; 

114 Rosas Pérez et al., 2007), but only a few studies dealt with the characterization of Mn-bearing 

115 particles collected inside or in the vicinities of ferromanganese alloy plants. According to the 
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116 literature, dust samples collected in different locations inside ferromanganese alloy plants have 

117 been already studied (Figure 1). In particular, PM emissions from the chimneys, e.g., downstream 

118 of the industrial filters (Arndt et al., 2016; Marris et al., 2012; Marris et al., 2013), Mn ores (Arndt 

119 et al., 2016), as well as samples collected directly from air pollution control devices such as wet 

120 scrubbers (Shen et al., 2005) or other industrial filters (Arndt et al., 2016) have been evaluated. 

121 In addition, indoor air samplings have been carried out in the factories at different locations: raw 

122 materials area (Gunst et al., 2000) and smelting, tapping, ladle and casting area (Gjonnes et al., 

123 2011; Gunst et al., 2000; Kero et al., 2015). Only a few studies focused on the characterization of 

124 Mn-bearing particles sampled in residential areas in the vicinities of these plants (Ledoux et al., 

125 2006; Marris et al., 2012; Marris et al., 2013; Moreno et al., 2011). 

126 In the present study, inductively coupled plasma mass spectrometry (ICP-MS), scanning 

127 electron microscopy-energy dispersive X ray (SEM-EDX) and X ray diffraction (XRD) have been 

128 applied to deepen the understanding of the physico-chemical characteristics of particulate matter 

129 and atmospheric deposition in the nearby of a Mn alloy plant located in an industrial-urban area 

130 in the Region of Cantabria (northern Spain).

131 2. Materials and methods

132 2.1 Area of study

133 The area of study of this work is located in the north of Spain, in the Region of Cantabria 

134 (585,179 inhabitants, 2015), specifically along the Santander Bay. This study has been focused 

135 in Maliaño, a town with around 10,000 inhabitants located in the southern part of the Santander 

136 Bay, where high concentrations of Mn in ambient air, according to the WHO criteria, have been 

137 previously reported (Moreno et al. 2011; Ruiz et al. 2014), identifying the presence of a 

138 ferromanganese alloy production plant as the main source of Mn.

139 This plant, with a total operation area of 174,353 m2 and a production capacity of 225,000 

140 t/year, specializes in silicomanganese and ferromanganese alloy production, including the 

141 manufacturing of three types of ferroalloys: high carbon ferromanganese (FeMn HC), 

142 silicomanganese (SiMn) and refined ferromanganese (FeMn MC). Four electric arc furnaces, are 
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143 dedicated equally to FeMn HC and SiMn, and an additional furnace is used for FeMn MC 

144 production. In the first case, raw materials are fed continuously to the smelting units and, once 

145 the process is concluded, tapping is carried out alternatively through one of the two available tap 

146 holes, pouring the mixture of molten alloy and slag into a ladle. In this part of the process, molten 

147 alloy is separated and transported to the casting area, where it is cooled and solidified, while the 

148 slag is sent to the quenching area with the same purpose. Finally, the products are prepared by 

149 crushing and screening. Since furnaces producing SiMn are also capable of utilizing the Mn 

150 content in FeMn slags, these are reused. FeMn MC manufacture is carried out similarly, but in a 

151 discontinuous manner. As shown in Figure 1, furnace off-gas processing at each smelting unit 

152 consists primarily of the control of fume emissions by a wet scrubber before flaring off (see A in 

153 Figure 1), and an alternative by-pass of the off-gas control equipment to reduce the risk of fire or 

154 explosion under certain operation conditions (see B in Figure 1). In addition, a baghouse filter is 

155 placed in each smelting building to control the emissions coming from the tapping, ladle and 

156 metal casting area (see C in Figure 1). The dust emissions from the ferroalloy crushing and 

157 screening are also controlled by baghouse filters.

158 2.2 Sampling methods

159 Prior to this work, an intensive PM10 sampling campaign was performed in nine sites of Maliaño 

160 town. Based on the results of this campaign (i.e. Mn levels), two of the sites with the highest Mn 

161 levels were selected to perform a physico-chemical study of manganese-bearing particles: Cros 

162 Park (CROS) and “La Vidriera” Cultural Centre (CCV). Sampling locations are shown in Figure 

163 2. Both sites were also chosen due to their closeness to the ferromanganese alloy plant,and for 

164 being located in a residential area,  downwind of the factory, when the prevailing wind directions 

165 in the region are blowing (S-SW). The CROS site (UTM, 30T, X = 431916, Y = 4807982), located 

166 at 850 m NNW of the factory is an official monitoring site that belongs to the regional 

167 government. On the other hand, the CCV site (UTM, 30T, X= 431899, Y= 4807290) is located at 

168 350 m NNW of the plant, in the rooftop of “La Vidriera” cultural center.
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169 PM10 samples have been collected by means of low and high volume samplers (2.3 m3/h and 30 

170 m3/h, respectively) onto polycarbonate and quartz fiber filters. The most suitable sampling time 

171 and substrate were chosen considering the analytical technique that will be used next. Firstly, a 

172 PM10 sampling campaign was performed at CCV site in September 2016 (28 daily samples) with 

173 a low volume sampler (2.3 m3/h) onto Sartorius quartz fiber filters (47 mm) for total metal content 

174 analysis. Additionally, some PM10 samples were collected at CCV site for SEM observations onto 

175 Whatman Nuclepore polycarbonate filters (47 mm, 0.4 µm) with a low volume sampler (2.3 

176 m3/h). These samplings were performed when the prevailing wind in the region was blowing 

177 (SSW). Under these wind conditions, the industrial plume sourcing from the ferromanganese 

178 alloy plant reaches the CCV site, therefore, these samples are highly influenced by this activity. 

179 The sampling time was only 2 h to obtain a suitable dispersion of the particles on the filter. 

180 Secondly, an extensive PM10 sampling campaign was carried out from January 2015 to January 

181 2016 at CROS site (1 sample per week, 52 samples) for total metal content analysis. Some PM10 

182 samples with different Mn concentrations were selected for XRD analysis between the 52 daily 

183 samples obtained in this campaign. In this case the samples were collected with a high-volume 

184 sampler (30 m3/h) onto Sartorius quartz fiber filters (150 mm). 24 h was a suitable sampling time 

185 to get enough amount of particles for the total metal content and XRD analysis. Also, bulk 

186 atmospheric deposition samples have been collected monthly from September 2015 to December 

187 2016 in CCV site using a funnel and a plastic bottle, based on the European Standard method “EN 

188 15841:2009”, and then filtered onto Whatman nitrocellulose filters (47 mm, 0.45 µm). Some 

189 samples of the insoluble part of the atmospheric deposition were selected for SEM observations 

190 and XRD analysis. Finally, a sample of dust was collected on a roof (approximately 10 m a.g.l) 

191 at CCV site. The dust was manually sampled with a plastic brush and, subsequently, dried and 

192 sieved to obtain two different size fractions: the first one lower than 70 µm (RDa) and the second 

193 one ranging from 70-100 µm (RDb). Whereas each deposition sample represents the dust 

194 deposited for around a month, the roof dust samples give information about the cumulative dust 

195 deposition in the area over a much longer period.
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196 2.3 Analytical methodology

197 Total content of Mn and Fe has been determined in PM10, insoluble fraction of atmospheric 

198 deposition and roof dust samples, based on the European standard method “EN-UNE 14902-

199 2006”. Regarding PM10 samples, once gravimetric determination was performed, one part of each 

200 filter (a quarter and a half of the quartz fiber filters with 150 mm and 47 mm diameter, 

201 respectively) was subjected to microwave assisted acid digestion (HNO3:H2O2 with a mixture of 

202 8:2 ml, up to 220ºC) and then the metal content was analyzed by inductively coupled plasma mass 

203 spectrometry (ICP-MS, Agilent 7500 CE). Quality control of the analytical procedure included 

204 the determination of the recovery values of the analyzed metals in a standard reference material 

205 (NIST SRM 1648a, “Urban particulate matter”), as well as the evaluation of the blank 

206 contribution from the filters and reagents and subsequent subtraction from the results. For 

207 deposition samples half of the nitrocellulose filters (47 mm, 0.45 µm) were cut and the same 

208 procedure was applied. Ultimately, around 100 mg of each size fraction of the roof dust sample 

209 were also digested and analyzed in duplicate according to the same methodology.

210 Individual particle analysis and SEM images were performed using a LEO 438 VP scanning 

211 electronic microscope (LEO Electron Microscopy Ltd, UK) equipped with an Energy Dispersive 

212 X-ray spectrometer (IXRF, Oxford Instruments, UK) (SEM-EDX). For the PM10 study, particles 

213 collected on polycarbonate filter were used. For roof dust and deposition samples, prior to 

214 analysis, particles were sonicated in ultrapure water and dispersed over a polycarbonate 

215 membrane. For each sample, about 1000 particles were analyzed. Carbon, nitrogen and oxygen 

216 (Z ≤ 8) were not taken into account in this analysis. Each data set was then submitted to 

217 hierarchical cluster analysis (HCA) using IDAS, a Windows based software for cluster analysis 

218 (Bondarenko et al., 1996); then, similar particles are grouped according to their composition 

219 leading to determine the different particle types in the sample.

220 Powder X-ray diffractograms (XRD) were recorded on a BRUKER D8 Advance 

221 diffractometer using Cu Kα radiation (λ = 1.5406 Å) in the 2Θ range 10–70◦, with a step size of 
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222 0.02° and an integration time of 15 s. Quartz fiber and nitrocellulose filters were used for PM10 

223 and deposition samples, respectively. Filters were directly placed on an amorphous holder to 

224 record diffractograms. It was verified that both types of filters do not produce any diffraction rays. 

225 In all the cases, interpretation was done after baseline correction. Phases identification was 

226 performed by comparing the most intense diffraction lines and their relative intensities with the 

227 XRD patterns provided by the Joint Committee on Powder Diffraction Standards.  

228 3. Results

229 3.1 Total metal composition 

230 Table 1 summarizes mean values and standard deviations of Mn and Fe, and the Mn/Fe ratio 

231 in PM10, insoluble fraction of atmospheric deposition and roof dust samples. The highest daily 

232 Mn level in the 24 h-PM10 sampling campaign carried out at CROS site reached 1,279 ng/m3 with 

233 an annual mean value of 231.7 ng/m3, being 1,018 ng/m3 and 279.4 ng/m3 for Fe, respectively. At 

234 CCV site the maximum Mn daily concentration was 2,062 ng/m3 and the monthly mean level was 

235 670.4 ng/m3, reaching 714.0 ng/m3 and 322.0 ng/m3 in the case of Fe, respectively. Even though 

236 the annual average guideline value established by WHO (150 ng Mn/m3) was exceeded in both 

237 sites, which are located at NNW from the ferroalloy plant and influenced by the prevailing winds 

238 in the region (S/SW), this exceedance was more pronounced at CCV site. The higher Mn level 

239 reported in the latter location can be mainly explained due to its greater proximity to the factory 

240 and the different meteorological conditions during the performance of the respective sampling 

241 campaigns. 

242 Average Mn and Fe concentrations in the insoluble fraction of the atmospheric deposition 

243 samples, collected for characterization at CCV site, reached 11,355 and 5,315 µg/m2·day, 

244 respectively. Despite there is no European regulation or recommendations about the Mn level in 

245 atmospheric deposition, these values are much higher than the common values obtained in other 

246 industrial and urban areas (Ali-Khodja et al., 2008; Castillo et al., 2013; Mijić et al., 2010; Rossini 

247 et al., 2010), as well as in other areas of the Cantabria region further away from the factory 

248 (Fernández-Olmo et al., 2015).
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249 Regarding roof dust samples, the fraction below 70 µm reached a mean Mn content of 

250 322,507 mg/kg and a Fe content of 159,859 mg/kg, whereas Mn and Fe concentrations in the 

251 fraction between 70 and 100 µm were 161,537 mg/kg and 199,517 mg/kg, respectively. Even 

252 though these values are much higher than Mn levels found in roof dust samples in other urban or 

253 industrial areas (Chattopadhyay et al., 2003; Žibret and Rokavec, 2010; Pavilonis et al., 2015), 

254 similar Mn levels have been previously reported in soil samples collected in the direction of the 

255 prevailing winds in the vicinities of a ferromanganese alloy plant located in Beauharnois, Canada 

256 (Boudissa et al., 2006), even more than 10 years after closure.

257 As Table 1 shows, the ratio between Mn and Fe in PM10 samples is 0.83 and 2.24 in samples 

258 collected at CROS and CCV sites, respectively. The higher Mn/Fe ratio found at CCV site can be 

259 related to its greater proximity to the factory with respect to CROS site and to the fact that, while 

260 the main Mn source throughout the Santander Bay is only attributed to the ferromanganese alloy 

261 plant, there are other Fe sources in the area, such as traffic and a steel plant located at around 3 

262 km N from CROS site. Additionally, Mn/Fe ratio in deposition samples collected at CCV site is 

263 2.14, similar to the ratio found in PM10 samples at the same location. Finally, the ratio between 

264 Mn and Fe content in roof dust samples is 2.02 and 0.81, pointing out the major presence of Mn 

265 in the finest dust fraction.

266 3.2 Characterization of manganese-bearing individual particles 

267 Table 2 shows the types of particles evidenced in PM10 samples collected at CCV site using 

268 SEM-EDX and after applying the statistical clustering analysis (HCA) (Bondarenko et al. 1996). 

269 From this classification, eleven different groups were obtained, corresponding mainly to 

270 Mn-bearing particles, Fe-rich particles and aluminosilicates. Particles containing Mn were found 

271 in five of these groups: (1P) 21.9 % of particles with Mn, Si and traces of K (Mn/Si ≈0.8), (3P) 

272 12.9 % of particles with Mn and Si (Mn/Si ≈4), (4P) 10.7 % of particles with Mn, Si, Zn and 

273 traces of K (Mn/Si ≈0.9), (5P) 10 % of Mn-rich particles and (7P) 4.6 % of particles with Mn, Ca, 

274 Si and S (Mn/Si ≈1.5). The most abundant groups containing Mn (1P, 3P and 4P) where mainly 

275 spherical particles of small size (mean diameters of 0.67 µm, 0.92 µm and 0.69 µm, respectively) 
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276 and were observed either isolated or agglomerated (see Figure 3). Also, more heterogeneous 

277 irregular Mn-bearing particles were detected (see 5P and 7P in Figure 3). The second most 

278 abundant group determined in the statistical clustering analysis (2P) corresponds to Fe-rich 

279 particles with a mean diameter of 1.08 µm. In this case the morphology was not well defined and 

280 either spherical or irregular particles were observed.

281 Some other groups of particles without any Mn content were identified. It can be noted the 

282 presence of 9.2 % of particles with Si, Al and S (aluminosilicates) with a mean diameter of 1.77 

283 µm and irregular shapes. Additionally, the following groups were also observed: (8P) 3.5 % of 

284 particles containing Fe, Si and S, (9P) 3.3 % of Si-rich particles, (10P) 2.6 % of particles with Ca 

285 and S and (11P) 1.9 % of Ca-rich particles. These groups also present an irregular morphology 

286 and sizes range from 0.98 to 2.26 µm. Suggested origin of the main clusters will be discussed in 

287 more details in the Discussion section. 

288 In relation with deposition and roof dust samples, the SEM-EDX analysis and subsequent 

289 statistical clustering analysis (HCA) led to the identification of ten different classes of particles, 

290 corresponding mainly to different types of Mn-bearing particles, Fe and Ca-rich particles and 

291 aluminosilicates. The relative abundance, mean diameter and composition of these groups are 

292 shown in Table 3. The three most abundant groups of particles, all containing Mn, were: (1D) 12 

293 to 41 % of particles composed of Mn, Fe, Si, and Al, (2D) 12-28 % of particles with Si, Ca, Mn, 

294 Al, Mg, S and K and (3D) 12-20 % of particles composed of Mn, Si, Fe, Al, Ca, S and Mg. 

295 Furthermore, between 7-9 % of particles with similar composition to cluster 2D, but higher Mn 

296 content has also been identified (see 5D in Table 3). As it can be seen in Figure 4, particles 

297 corresponding to clusters 1D and 3D, with mean diameters of 24.8 µm and 19.9 µm, respectively, 

298 show primarily irregular shapes, whereas particles related to cluster 2D (mean diameter, 25.3 µm) 

299 appear as angular particles and frequently have holes in their structure. Also, different groups of 

300 particles attributed to aluminosilicates, with low Mn content, were observed: (4D) 10-27 % of 

301 particles composed of Si, Al, Mn, Fe, Ca, K and S, (8D) 0-7 % composed of Fe, Si, Mn, Al, Ca 

302 and S and (9D) 0-2 % of particles with Al, Ca, Mn, S, Si. These three groups of particles, with 

303 mean diameters of 13.4 µm, 13.2 µm and 14.6 µm, respectively, are characterized by a smaller 
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304 size with respect to the most abundant groups containing Mn (1D, 2D and 3D). While particles 

305 belonging to cluster 4D were observed in all the analyzed samples, particles from groups 8D and 

306 9D only appeared in some of them. Additionally, the following clusters have been observed: (6D) 

307 4-7 % of Si-rich, (7D) 2-3 % of Fe-rich and (10D) 0-7 % of Ca-rich. As Figure 4 shows, these 

308 groups, with mean diameters of 23.7 µm, 13.0 µm and 9.7 µm, respectively, present also irregular 

309 shapes. Cluster suggested origin will be discussed in more details in the Discussion section.

310 3.3 Crystalline phases of manganese-bearing particles 

311 Table 4 summarizes the main crystalline phases identified by XRD in PM10, deposition and 

312 roof dust samples. The presence of crystalline phases was validated considering at least the two 

313 most intense diffraction lines with their relative intensities. In the case of very low intense 

314 diffractogram, as for PM10 samples, some phases can only be suggested as it was only possible to 

315 observe the most intense diffraction line. Nevertheless, these suggested phases were also detected 

316 in other published studies dealing with atmospheric particles (Gonzalez et al., 2016; Sturges and 

317 Harrison, 1989) or performed at the vicinity of a Mn alloy producer (Marris et al., 2012). As 

318 Figure 5 shows, only a few crystallographic phases were identified by XRD in PM10 samples. The 

319 main Mn-containing phases identified were bixbyite (Mn2O3), manganese dioxide (MnO2) and 

320 rhodochrosite (MnCO3). Also, some other compounds without Mn content such as gypsum, 

321 quartz, aluminum silicate and calcium carbonate were detected. Figure 6 shows the main 

322 crystalline phases identified by XRD in deposition samples. The main Mn-containing phases 

323 identified were bixbyite (Mn2O3 and FeMnO3), rhodochrosite (MnCO3), manganosite or iron 

324 manganese oxide (MnO or (FeO)0.099/(MnO)0.901), hausmannite (Mn3O4), alabandite (MnS), 

325 manganese iron silicon (Mn4FeSi3), glaucochroite ((Ca,Mn)2SiO4) and manganocalcite ((Ca, 

326 Mn)CO3). As in the case of PM10 samples, quartz and calcium carbonate were also detected by 

327 XRD in deposition samples. Additionally, other phases without any Mn content such as 

328 microcline (KAlSi3O8) and dolomite (CaMg(CO3)2) could also be suggested. Most of the 

329 crystalline phases identified in deposition samples, were also observed in roof dust samples, 

330 confirming the similar mineralogical identity of both matrices. Only alabandite, was identified in 
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331 deposition samples, but not in roof dust samples. Moreover, bustamite and hematite were only 

332 detected in the roof dust fraction between 70-100 µm, but not in the fraction below 70 µm, neither 

333 in the deposition samples. Also, despite dolomite was found in deposition samples and in the roof 

334 dust sample below 70 µm, it was not detected in the fraction between 70-100 µm.

335 4. Discussion

336 Around 60% of the particles observed by SEM-EDX in the PM10 samples contain Mn. Most 

337 abundant groups of Mn-bearing particles (primarily 1P, 3P and 4P) are characterized by spherical 

338 shapes and small sizes, most of them in the submicron range, whereas less abundant Mn-clusters 

339 (5P and 7P) correspond to heterogeneous irregular particles. Due to the fact that Mn present in 

340 inhaled nanoparticles can translocate directly to the brain without entering the lung (Elder et al., 

341 2006; Sunyer, 2008), and taking into account the neurotoxic effect of Mn, further studies in 

342 relation with potential toxicity and health effects of such submicron spherical particles should be 

343 done. In particular, bioaccessibility studies may be required to assess the health effects of this 

344 kind of particles. According to Thomassen et al. (2001), SiMn alloys are almost insoluble; 

345 however, Mn2+ compounds are easily soluble, and Mn-bearing condensed particles from molten 

346 ferroalloy may have been rapidly oxidized. The oxidation of silicomanganese fumes has been 

347 pointed by Kero et al. (2015), since oxygen was also detected as major element together with Si 

348 and Mn in spherical fume particles collected near a silicomanganese furnace. Gjønnes et al. (2011) 

349 also found spherical Mn-rich particles in the FeMn tapping and SiMn casting areas, being ascribed 

350 to condensates from the Mn alloy smelting process. Therefore, it can be assumed that the presence 

351 of this kind of particles in PM10 samples may be due to either diffuse or confined emissions from 

352 the ferromanganese alloy smelter building. Main differences between clusters 1P, 3P and 4P are 

353 related to Mn/Si ratio and particle size. Whereas cluster 1P and 4P have a Mn/Si ratio of 0.8 and 

354 0.9 respectively, the latter with an important presence of Zn, cluster 3P is characterized by a Mn/Si 

355 ratio of 4 and bigger particle size. The greater dominance of Si in the smallest fractions of particles 

356 sourcing from the smelting unit process has been previously reported by Kero et al. (2015). 

357 Additionally, since a significant presence of Zn has been found in the particles captured by the 
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358 baghouse filter that control the dust emissions from the smelting unit in the tapping and casting 

359 area (Arndt et al., 2016), it can be assumed that due to the significant amount of Zn in cluster 4P, 

360 these particles can be more related to diffuse emissions from the smelting building, resulting from 

361 the emissions that are not confined by the hooding system. However, further work should be done 

362 to identify the specific origin of these clusters within the process.

363 Heterogeneous particles with irregular morphology have also been observed, in the literature, 

364 in both SiMn and FeMn alloy production, mainly linked to minerals or alloys (Gjønnes et al., 

365 2011; Kero et al., 2015). Bixbyite (Mn2O3), manganese dioxide (MnO2) and rhodochrosite 

366 (MnCO3) phases were identified in PM10 samples (see Table 4), in agreement with previous 

367 observations. Thus, these phases were detected in Mn ores (Arndt et al., 2016; Baioumy et al., 

368 2013), diffuse emissions from the smelting building (Gjønnes et al., 2011), wet scrubber sludge 

369 (Shen et al., 2005) or in PM emissions from the smelting unit chimneys (Arndt et al., 2016) 

370 (downstream the industrial filters), and therefore, can be attributed to fugitive emissions from Mn 

371 ore piles and also to fugitive or confined emissions from the ferromanganese alloy smelter 

372 building. In addition, the presence of Mn oxides and carbonates in PM10 samples can explain the 

373 composition of particles from cluster 5P, since these are Mn rich particles with irregular shapes 

374 (it can be recalled that O and C are not detected in the SEM-EDX analysis). As Table 4 shows, 

375 and also in accordance with composition of clusters 9P and 11P, some compounds attributed to 

376 common raw materials used in the FeMn and SiMn production were identified, primarily quartz 

377 and calcium carbonate. 

378 It should also be noted that, since FeMn and SiMn alloys are produced in the plant and both 

379 alloys have an important Fe content (≈14-15%), initially, the identification of FeMn particles was 

380 expected in PM10 samples; however, a cluster with this composition was not found. According to 

381 Kero et al. (2015) and Gjønnes et al. (2011) the presence of Fe in the dust sourcing from the SiMn 

382 smelting unit is negligible. Moreover, as Gjønnes et al. (2011) reported during production of 

383 SiMn, the submicron fraction consists predominantly of SiMn and other Mn-Si particles, whereas 

384 in the FeMn production dominates the presence of MnO and minor amounts of other Mn-Fe 
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385 oxides. Therefore, based on the major presence of Mn-Si particles determined by the SEM-EDX 

386 analysis, as well as on the fact that no FeMn cluster was identified, it can be assumed that during 

387 the short sampling period for SEM-EDX analysis the production was primarily focused on SiMn 

388 alloy.

389 Eight of the ten main groups of particles observed in deposition and roof dust samples by 

390 SEM-EDX contain Mn. Particles composed of Mn were bigger with respect to the ones found in 

391 PM10 samples and have predominantly irregular shapes. The greater variety of Mn bearing 

392 particles in deposition samples with respect to PM10 samples can be explained by the much longer 

393 sampling period, representing many different production scenarios. 

394 Based on their morphology and composition, particles from cluster 1D have been attributed 

395 to a mixture of FeMn and SiMn alloys. Figure 7 represents the comparison between the 

396 composition of cluster 1D, obtained by SEM-EDX, after applying the statistical clustering 

397 analysis, and the weighted average relative composition of the alloys taking into account the 

398 production pattern throughout the year 2013 (Ferroatlántica, 2013). Despite slight differences 

399 between both groups can be observed, particularly in the Si content, this can be attributed to the 

400 variability of the production process and it can be assumed that composition of cluster 1D is in 

401 general accordance with a mixture of FeMn and SiMn alloys. Therefore, it is likely that particles 

402 from group 1D are emitted from activities related to the conversion from molten metal to final 

403 Mn alloy product, namely grinding and screening of the alloy. Furthermore, Mn4FeSi3 was 

404 detected by XRD in all the deposition samples.

405 In parallel, cluster 2D has been attributed to SiMn vitrified slags. First, the morphology of 

406 this kind of particles observed in SEM photographs (Figure 4) agrees with the SiMn slags 

407 produced by the factory. In addition, according to several authors, SiMn slag is composed mainly 

408 of SiO2 and CaO, followed by Al2O3 and MnO (Frias et al., 2006). Figure 8 represents the 

409 comparison between the composition of cluster 2D and the previous reported relative composition 

410 of several SiMn vitrified slags. Despite O is not included in the SEM-EDX analysis, assuming 

411 that chemical speciation of Si, Ca, Al and Mn is in the form of SiO2, CaO, Al2O3 and MnO, 
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412 respectively, it can be seen from Figure 8 that elemental composition of SiMn slags is in general 

413 agreement with the composition of cluster 2D. This is also in accordance with the identification 

414 by XRD of alabandite, which has been related to vitrified SiMn slags (Ayala and Fernández, 

415 2015). In addition, since several groups of particles with different Si/Al content have also been 

416 identified, and taking into account that the uncontrolled cooling of the slag can lead to a different 

417 degree of crystallization (Nath et al., 2016), the presence of clusters 4D, 8D or 9D may also be 

418 related to SiMn slags. Moreover, as Figure 9 shows, the relative composition of cluster 5D is in 

419 accordance with that of a high-Mn FeMn slag reported in a previous study (Rai et al., 2002). The 

420 lower abundance of these particles in relation with other clusters attributed to vitrified or partially 

421 crystallized SiMn slags (2D and 4D, respectively), may be associated with the reuse of FeMn 

422 slags as a Mn source in the SiMn alloy production process, leading to fewer handling steps of the 

423 slag and, therefore less fugitive emissions of these particles. It should be noted that up to 70 % of 

424 particles detected in deposition and roof dust samples may be attributed to ferromanganese alloys 

425 and slags. This is in agreement with the high contribution of the fugitive emissions from metal 

426 and slag tapping, casting, crushing and screening to the total Mn emissions in the Mn alloy 

427 production (Davourie et al., 2016). According to the literature the Mn solubility from 

428 silicomanganese (Thomassen et al., 2001; Ellingsen et al., 2003) and from Mn slags is expected 

429 to be very low. Therefore, potential harmful effects of Mn-bearing particles from atmospheric 

430 deposition are supposed to be lower with respect to PM10. 

431 Additionally, composition and morphology of cluster 3D have been attributed to Mn ores. 

432 Several crystallographic phases identified in deposition and roof dust samples, also detected in 

433 PM10 samples, for instance bixbyite (Mn2O3, and FeMnO3), manganese dioxide (MnO2) and 

434 rhodochrosite (MnCO3) (see Table 4) have been previously related to Mn ores (Arndt et al., 2016; 

435 Baioumy et al., 2013). Also dolomite has been previously reported in relation with this minerals 

436 (He et al., 2016). Other identified phases, such as hausmannite (Mn3O4, manganocalcite 

437 ((Ca,Mn)CO3) and mangonosite (MnO), previously observed in the wet scrubber sludge (Shen et 

438 al., 2005), may be attributed to emissions originated at the Mn ore storage and the ferroalloy 

439 milling process. As in PM10 samples, some compounds attributed to common raw materials used 
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440 in the FeMn and SiMn production were identified in deposition and roof dust samples, primarily 

441 quartz and calcite, probably related to clusters 6D and 10D.

442 5. Conclusions

443 Most of the particles observed by SEM-EDX in PM10, deposition and roof dust samples 

444 collected in a residential area in the vicinities of a ferromanganese alloy plant, where Mn air 

445 concentrations exceed the WHO guidelines, contain Mn. However, few Mn compounds were 

446 detected by XRD in PM10 samples probably due to the few amount of particles and the poor 

447 crystallinity of the Mn compounds present in this matrix. More Mn phases were detected by XRD 

448 in deposition and roof dust samples (e.g. bixbyite, rhodochrosite, manganosite and hausmannite). 

449 Around 60% of Mn-PM10 particles showed spherical shapes and small sizes and were attributed 

450 to condensation processes at the smelting unit of the Mn alloy plant. Due to the neurotoxic effect 

451 of Mn and taking into account the shape and small size of these particles, most of them in the 

452 submicron range, it is necessary to further investigate their potential toxicity and health effects.

453 Mn-bearing particles were also dominant in the deposition samples, most of them consisting of 

454 SiMn slags, Mn alloys and Mn ores, and were mainly attributed to diffuse emissions from raw 

455 material and slag/product handling and processing, as well as to diffuse and confined emissions 

456 from the smelting building. These particles are characterized by irregular shapes and bigger sizes 

457 with respect to PM10, therefore they are expected to be less harmful. In addition, the Mn solubility 

458 from Mn slags and alloys is expected to be very low.

459 The application of SEM-EDX and XRD to the characterization of PM10, deposition and roof 

460 dust samples has been crucial to better understand the significant differences in the 

461 physicochemical characteristics of the Mn-bearing particles sourcing from a ferromanganese 

462 alloy plant. The main results derived from this characterization indicate that Mn occurs in various 

463 oxidation states, some of them highly soluble, and is mainly associated with submicronic particles 

464 known to be the most harmful for health. Thus, Mn contained in spherical small particles is 

465 expected to be much more bioaccessible than that found in coarser particles detected in deposition 
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466 samples. Therefore, the use of these techniques can be a valuable tool, leading to an improvement 

467 in the assessment of Mn potential hazardous effects on human health.

468 Acknowledgements

469 This work has been financially supported by the Spanish Ministry of Economy and 

470 Competitiveness (MINECO) through the Project CTM2013-43904R. Ana Hernández-Pellón 

471 thanks the Ministry of Economy and Competitiveness (MINECO) for the FPI grant awarded, 

472 BES-2014-068790.

473

474

475 References

476 Agency for Toxic Substances and Disease Registry (ATSDR), 2012. U.S. Department of health 

477 and human services, Public Health Service. Toxicological profile for manganese.

478 Ali-Khodja H, Belaala A, Demmane-DebbihW, Habbas B, B., N, 2008. Air quality and deposition 

479 of trace elements in Dodouche Mourad, Algeria. Env. Monit Assess 138, 219–231.

480 Arndt, J., Deboudt, K., Anderson, A., Blondel, A., Eliet, S., Flament, P., Fourmentin, M., Healy, 

481 R.M., Savary, V., Setyan, A., Wenger, J.C., 2016. Scanning electron microscopy-energy 

482 dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry 

483 (ATOFMS) single particle analysis of metallurgy plant emissions. Environ. Pollut. 210, 9–17. 

484 doi:10.1016/j.envpol.2015.11.019

485 Arruti, A., Fernández-Olmo, I., Irabien, A., 2010. Evaluation of the contribution of local sources 

486 to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain). J. 

487 Environ. Monit. 12, 1451–1458. doi:10.1039/b926740a

488 Ayala, J., Fernández, B., 2015. Recovery of manganese from silicomanganese slag by means of 

489 a hydrometallurgical process. Hydrometallurgy 158, 68–73. doi:10.1016/j.hydromet.2015.10.007



ACCEPTED MANUSCRIPT

19

490 Baioumy, H.M., Khedr, M.Z., Ahmed, A.H., 2013. Mineralogy, geochemistry and origin of Mn 

491 in the high-Mn iron ores, Bahariya Oasis, Egypt. Ore Geol. Rev. 53, 63–76. 

492 doi:10.1016/j.oregeorev.2012.12.009

493 Bondarenko, I., Treiger, B., Van Grieken, R., Van Espen, P., 1996. IDAS: A Windows based 

494 software package for cluster analysis. Spectrochim. Acta - Part B At. Spectrosc. 51, 441–456. 

495 doi:10.1016/0584-8547(95)01448-9

496 Boudissa, S.M., Lambert, J., Müller, C., Kennedy, G., Gareau, L., Zayed, J., 2006. Manganese 

497 concentrations in the soil and air in the vicinity of a closed manganese alloy production plant. Sci. 

498 Total Environ. 361, 67–72. doi:10.1016/j.scitotenv.2005.05.001

499 Cantabria, C.G. of, 2006. Evaluation of the influence of wind direction on manganese content of 

500 PM10 collected in Alto de Maliaño.

501 Carvalho, C.F., Menezes-Filho, J.A., Matos, V.P. de, Bessa, J.R., Coelho-Santos, J., Viana, 

502 G.F.S., Argollo, N., Abreu, N., 2014. Elevated airborne manganese and low executive function 

503 in school-aged children in Brazil. Neurotoxicology 45, 301–308. 

504 doi:10.1016/j.neuro.2013.11.006

505 Castillo, S., De la Rosa, J.D., Sánchez de la Campa, A.M., González-Castanedo, Y., Fernández-

506 Camacho, R., 2013. Heavy metal deposition fluxes affecting an Atlantic coastal area in the 

507 southwest of Spain. Atmos. Environ. 77, 509–517. doi:10.1016/j.atmosenv.2013.05.046

508 Chattopadhyay, G., Lin, K.C.P., Feitz, A.J., 2003. Household dust metal levels in the Sydney 

509 metropolitan area. Environ. Res. 93, 301–307. doi:10.1016/S0013-9351(03)00058-6

510 Chen, P., Culbreth, M., Aschner, M., 2016. Exposure, epidemiology, and mechanism of the 

511 environmental toxicant manganese. Environ. Sci. Pollut. Res. 23, 13802–13810. 

512 doi:10.1007/s11356-016-6687-0

513 CIMA, Government of Cantabria, 2010. Evaluación de la calidad del aire y analítica de metales 

514 en la fracción PM10 en el Alto Maliaño. Internal Report C-077/2008.



ACCEPTED MANUSCRIPT

20

515 CIMA. Government of Cantabria, 2006. Evaluation of the influence of wind direction on 

516 manganese content of PM10 collected in Alto Maliaño. Internal Report C-098/2004.4.

517 Crossgrove, J., Zheng, W., 2004. Manganese toxicity upon overexposure. NMR Biomed. 17, 544–

518 553. doi:10.1002/nbm.931

519 Davourie, J., Westfall, L., Ali, M., McGough, D., 2016. Evaluation of particulate matter emissions 

520 from manganese alloy production using life-cycle assessment. Neurotoxicology 3. In press  

521 doi:http://dx.doi.org/10.1016/j.neuro.2016.09.015 

522 Dieme, D., Cabral-Ndior, M., Garçon, G., Verdin, A., Billet, S., Cazier, F., Courcot, D., Diouf, 

523 A., Shirali, P., 2012. Relationship between physicochemical characterization and toxicity of fine 

524 particulate matter (PM 2.5) collected in Dakar city (Senegal). Environ. Res. 113, 1–13. 

525 doi:10.1016/j.envres.2011.11.009

526 Elder, A., Gelein, R., Silva, V., Feikert, T., Opanashuk, L., Carter, J., Potter, R., Maynard, A., Ito, 

527 Y., Finkelstein, J., Oberdörster, G., 2006. Translocation of inhaled ultrafine manganese oxide 

528 particles to the central nervous system. Environ. Health Perspect. 114, 1172–1178. 

529 doi:10.1289/ehp.9030

530 Ellingsen, D.G., Hetland, S.M., Thomassen, Y., 2003. Manganese air exposure assessment and 

531 biological monitoring in the manganese alloy production industry. J. Environ. Monit. 5, 84–90. 

532 doi:10.1039/b209095c

533 Ellingsen, D.G., Zibarev, E., Kusraeva, Z., Berlinger, B., Chashchin, M., Bast-Pettersen, R., 

534 Chashchin, V. and Thomassen Y., 2013. The bioavailability of manganese in welders in relation 

535 to its solubility in welding fumes. Environ Sci Process Impacts, 15(2):357-365.Fernández-Olmo, 

536 I., Puente, M., Irabien, A., 2015. A comparative study between the fluxes of trace elements in 

537 atmospheric deposition at industrial, urban, traffic, and rural sites. Environ. Sci. Pollut. Res. 22, 

538 13427–13441. doi:10.1007/s11356-015-4562-z



ACCEPTED MANUSCRIPT

21

539 Ferroatlántica S.L., 2013. Declaración ambiental. División Electrometalurgia. Centro productivo: 

540 Fábrica de Boo.

541 Flynn, M.R., Susi, P., 2009. Neurological risks associated with manganese exposure from welding 

542 operations - A literature review. Int. J. Hyg. Environ. Health 212, 459–469. 

543 doi:10.1016/j.ijheh.2008.12.003

544 Freeland-Graves, J.H., Mousa, T.Y., Sanjeevi, N., 2015. Nutritional requirements for manganese, 

545 Issues in Toxicology, 22, 34-75.

546 Frias, M., Sánchez De Rojas, M.I., Santamaría, J., Rodríguez, C., 2006. Recycling of 

547 silicomanganese slag as pozzolanic material in Portland cements: Basic and engineering 

548 properties. Cem. Concr. Res. 36, 487–491. doi:10.1016/j.cemconres.2005.06.014

549 Gjønnes, K., Skogstad, A., Hetland, S., Ellingsen, D.G., Thomassen, Y., Weinbruch, S., 2011. 

550 Characterisation of workplace aerosols in the manganese alloy production industry by electron 

551 microscopy. Anal. Bioanal. Chem. 399, 1011–1020. doi:10.1007/s00216-010-4470-5

552 González, L.T., Rodríguez, F.E.L., Sánchez-Domínguez, M., Leyva-Porras, C., Silva-Vidaurri, 

553 L.G., Acuna-Askar, K., Kharisov, B.I., Villarreal Chiu, J.F., Alfaro Barbosa, J.M., 2016. 

554 Chemical and morphological characterization of TSP and PM2.5 by SEM-EDS, XPS and XRD 

555 collected in the metropolitan area of Monterrey, Mexico. Atmospheric Environment 143, 249-

556 260. doi:10.1016/j.atmosenv.2016.08.053

557 Gunst, S., Weinbruch, S., Wentzel, M., Ortner, H.M., Skogstad, A., Hetland, S., Thomassen, Y., 

558 2000. Chemical composition of individual aerosol particles in workplace air during production of 

559 manganese alloys. J. Environ. Monit. 2, 65–71. doi:10.1039/a908329d

560 Haynes, E.N., Heckel, P., Ryan, P., Roda, S., Leung, Y.K., Sebastian, K., Succop, P., 2010. 

561 Environmental manganese exposure in residents living near a ferromanganese refinery in 

562 Southeast Ohio: A pilot study. Neurotoxicology 31, 468–474. doi:10.1016/j.neuro.2009.10.011



ACCEPTED MANUSCRIPT

22

563 He, H., Cao, J., Duan, N., 2016. Analytical and mineralogical study of a Ghana manganese ore: 

564 Quantification of Mn speciation and effect of mechanical activation. Chemosphere 162, 8–15. 

565 doi:10.1016/j.chemosphere.2016.07.061

566 Hernández-Pellón A., Fernández-Olmo, I., 2016. Monitoring the levels of particle matter-bound 

567 manganese: An intensive campaign in an urban/industrial area. II International Conference on 

568 Atmospheric Dust (DUST 2016). Scientific Research Abstracts 5, 7.

569 Keen, C.L., Ensunsa, J.L., Clegg, M.S., 2000. Manganese metabolism in animals and humans 

570 including the toxicity of manganese. Met. Ions Biol. Syst. 37, 89-121.

571 Kero, I., Naess, M.K., Tranell, G., 2015. Particle Size Distributions of Particulate Emissions from 

572 the Ferroalloy Industry Evaluated by Electrical Low Pressure Impactor ( ELPI ). J. Occup. 

573 Environ. Hyg. 9624, 37–44. doi:10.1080/15459624.2014.935783

574 Kwakye, G.F., Paoliello, M.M.B., Mukhopadhyay, S., Bowman, A.B., Aschner, M., 2015. 

575 Manganese-induced parkinsonism and Parkinson’s disease: Shared and distinguishable features. 

576 Int. J. Environ. Res. Public Health 12(7), 7519-7540 doi:10.3390/ijerph120707519

577 Ledoux, F., Laversin, H., Courcot, D., Courcot, L., Zhilinskaya, E.A., Puskaric, E., Aboukaïs, A., 

578 2006. Characterization of iron and manganese species in atmospheric aerosols from 

579 anthropogenic sources. Atmos. Res. 82, 622–632. doi:10.1016/j.atmosres.2006.02.018

580 Lucchini, R.G., Guazzetti, S., Zoni, S., Donna, F., Peter, S., Zacco, A., Salmistraro, M., Bontempi, 

581 E., Zimmerman, N.J., Smith, D.R., 2012. Tremor, olfactory and motor changes in Italian 

582 adolescents exposed to historical ferro-manganese emission. Neurotoxicology 33, 687–696. 

583 doi:10.1016/j.neuro.2012.01.005

584 Majestic, B. J., Schauer, J. J. and Shafer, M. M., 2007. Development of a manganese speciation 

585 method for atmospheric aerosols in biologically and environmentally relevant fluids. Aerosol 

586 Science and Technology 41(10), 925-933. doi:10.1080/02786820701564657



ACCEPTED MANUSCRIPT

23

587 Marris, H., Deboudt, K., Augustin, P., Flament, P., Blond, F., Fiani, E., Fourmentin, M., Delbarre, 

588 H., 2012. Fast changes in chemical composition and size distribution of fine particles during the 

589 near-field transport of industrial plumes. Sci. Total Environ. 427–428, 126–138. 

590 doi:10.1016/j.scitotenv.2012.03.068

591 Marris, H., Deboudt, K., Flament, P., Grobéty, B., Gieré, R., 2013. Fe and Mn oxidation states by 

592 TEM-EELS in fine-particle emissions from a Fe-Mn alloy making plant. Environ. Sci. Technol. 

593 47, 10832–10840. doi:10.1021/es400368s

594 Megido, L., Suárez-Peñaa, B., Negral, L., Castrillón, L., Suárez, S., Fernández-Nava, Y., 

595 Marañón, E., 2016. Relationship between physico-chemical characteristics and potential toxicity 

596 of PM10. Chemosphere 162, 73–79. doi:10.1016/j.chemosphere.2016.07.067

597 Menezes-Filho, J.A., Novaes, C. de O., Moreira, J.C., Sarcinelli, P.N., Mergler, D., 2011. 

598 Elevated manganese and cognitive performance in school-aged children and their mothers. 

599 Environ. Res. 111, 156–163. doi:10.1016/j.envres.2010.09.006

600 Mijić, Z., Stojić, A., Perišić, M., Rajšić, S., Tasić, M., Radenković, M., Joksić, J., 2010. Seasonal 

601 variability and source apportionment of metals in the atmospheric deposition in Belgrade. Atmos. 

602 Environ. 44, 3630–3637. doi:10.1016/j.atmosenv.2010.06.045

603 Moreno, T., Pandolfi, M., Querol, X., Lavín, J., Alastuey, A., Viana, M., Gibbons, W., 2011. 

604 Manganese in the urban atmosphere: Identifying anomalous concentrations and sources. Environ. 

605 Sci. Pollut. Res. 18, 173–183. doi:10.1007/s11356-010-0353-8

606 Nath, S.K., Kumar, S., 2016. Evaluation of the suitability of ground granulated silico-manganese 

607 slag in Portland slag cement. Constr. Build. Mater. 125, 127–134. 

608 doi:10.1016/j.conbuildmat.2016.08.025Park, R.M., 2013. Neurobehavioral deficits and 

609 parkinsonism in occupations with manganese exposure: A review of methodological issues in the 

610 epidemiological literature. Saf. Health Work 4(3), 123-135. doi:10.1016/j.shaw.2013.07.003



ACCEPTED MANUSCRIPT

24

611 Pavilonis, B.T., Lioy, P.J., Guazzetti, S., Bostick, B.C., Donna, F., Peli, M., Zimmerman, N.J., 

612 Bertrand, P., Lucas, E., Smith, D.R., Georgopoulos, P.G., Mi, Z., Royce, S.G., Lucchini, R.G., 

613 2015. Manganese concentrations in soil and settled dust in an area with historic ferroalloy 

614 production. J. Expo. Sci. Environ. Epidemiol. 25, 443–450. doi:10.1038/jes.2014.70

615 Perrone, M.G., Gualtieri, M., Ferrero, L., Porto, C. Lo, Udisti, R., Bolzacchini, E., Camatini, M., 

616 2010. Seasonal variations in chemical composition and in vitro biological effects of fine PM from 

617 Milan. Chemosphere 78, 1368–1377. doi:10.1016/j.chemosphere.2009.12.071

618 Qin, J., Nworie, O.E., Lin, C., 2016. Particle size effects on bioaccessible amounts of ingestible 

619 soil-borne toxic elements. Chemosphere 159, 442–448. doi:10.1016/j.chemosphere.2016.06.034

620 Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., de la Rosa, J., 

621 Sánchez de la Campa, A., Artíñano, B., Salvador, P., García Dos Santos, S., Fernández-Patier, R., 

622 Moreno-Grau, S., Negral, L., Minguillón, M.C., Monfort, E., Gil, J.I., Inza, A., Ortega, L.A., 

623 Santamaría, J.M., Zabalza, J., 2007. Source origin of trace elements in PM from regional 

624 background, urban and industrial sites of Spain. Atmos. Environ. 41, 7219–7231. 

625 doi:10.1016/j.atmosenv.2007.05.022

626 Rai, A., Prabakar, J., Raju, C.B., Morchalle, R.K., 2002. Metallurgical slag as a component in 

627 blended cement. Constr. Build. Mater. 16, 489–494. doi:10.1016/S0950-0618(02)00046-6

628 Riojas-Rodríguez, H., Solís-Vivanco, R., Schilmann, A., Montes, S., Rodríguez, S., Ríos, C., 

629 Rodríguez-Agudelo, Y., 2010. Intellectual function in Mexican children living in a mining area 

630 and environmentally exposed to manganese. Environ. Health Perspect. 118, 1465–1470. 

631 doi:10.1289/ehp.0901229

632 Rodríguez-Agudelo, Y., Riojas-Rodríguez, H., Ríos, C., Rosas, I., Sabido Pedraza, E., Miranda, 

633 J., Siebe, C., Texcalac, J.L., Santos-Burgoa, C., 2006. Motor alterations associated with exposure 

634 to manganese in the environment in Mexico. Sci. Total Environ. 368, 542–556. 

635 doi:10.1016/j.scitotenv.2006.03.025



ACCEPTED MANUSCRIPT

25

636 Rodríguez-Barranco, M., Lacasaña, M., Aguilar-Garduño, C., Alguacil, J., Gil, F., González-

637 Alzaga, B., Rojas-García, A., 2013. Association of arsenic, cadmium and manganese exposure 

638 with neurodevelopment and behavioural disorders in children: A systematic review and meta-

639 analysis. Sci. Total Environ. 454–455, 562–577. doi:10.1016/j.scitotenv.2013.03.047

640 Roels, H.A., Bowler, R.M., Kim, Y., Claus Henn, B., Mergler, D., Hoet, P., Gocheva, V. V., 

641 Bellinger, D.C., Wright, R.O., Harris, M.G., Chang, Y., Bouchard, M.F., Riojas-Rodriguez, H., 

642 Menezes-Filho, J.A., Téllez-Rojo, M.M., 2012. Manganese exposure and cognitive deficits: A 

643 growing concern for manganese neurotoxicity. Neurotoxicology 33, 872–880. 

644 doi:10.1016/j.neuro.2012.03.009

645 Rosas Pérez, I., Serrano, J., Alfaro-Moreno, E., Baumgardner, D., García-Cuellar, C., Martín del 

646 Campo, J.M., Raga, G.B., Castillejos, M., Colín, R.D., Osornio Vargas, A.R., 2007. Relations 

647 between PM10 composition and cell toxicity: A multivariate and graphical approach. 

648 Chemosphere 67, 1218–1228. doi:10.1016/j.chemosphere.2006.10.078

649 Rossini, P., Matteucci, G., Guerzoni, S., 2010. Atmospheric fall-out of metals around the Murano 

650 glass-making district (Venice, Italy). Environ. Sci. Pollut. Res. 17, 40–48. doi:10.1007/s11356-

651 009-0122-8

652 Ruiz, S., Fernández-Olmo, I., Irabien, Ángel, 2014. Discussion on graphical methods to identify 

653 point sources from wind and particulate matter-bound metal data. Urban Clim. 10, 671–681. 

654 doi:10.1016/j.uclim.2013.11.001

655 Santamaria, A.B., 2008. Manganese exposure, essentiality & toxicity. Indian J. Med. Res. 128, 

656 484–500. doi:10.5897/AJEST12.196

657 Shen, R., Zhang, G., Dell’Amico, M., Brown, P., Ostrovski, O., 2005. Characterisation of 

658 Manganese Furnace Dust and Zinc Balance in Production of Manganese Alloys. ISIJ Int. 45, 

659 1248–1254. doi:10.2355/isijinternational.45.1248



ACCEPTED MANUSCRIPT

26

660 Sturges, W.T., Harrison, R.M., 1989. Semi-quantitative x-ray diffraction analysis of size 

661 fractionated atmospheric particles. Atmospheric Environment (1967) 23, 1083-1098. 

662  doi:10.1016/0004-6981(89)90309

663 Sunyer, J., 2008. The neurological effects of air pollution in children. Eur. Respir. J. 32, 535–537. 

664 doi:10.1183/09031936.00073708Thomassen, Y., Ellingsen, D.G., Hetland, S., Sand, G., 2001. 

665 Chemical speciation and sequential extraction of Mn in workroom aerosols: analytical 

666 methodology and results from a field study in Mn alloy plants. J. Environ. Monit. 3, 555–559. 

667 doi:10.1039/b104479f

668 WHO, 2000. Air quality guidelines for Europe. WHO Regional Publications, European Series, 

669 No. 91.

670 Žibret, G., Rokavec, D., 2010. Household dust and street sediment as an indicator of recent heavy 

671 metals in atmospheric emissions: A case study on a previously heavily contaminated area. 

672 Environ. Earth Sci. 61, 443–453. doi:10.1007/s12665-009-0356-2



ACCEPTED MANUSCRIPT

Figure Captions

Figure 1: Flow diagram of a ferromanganese alloy plant showing the point and fugitive sources 
of PM. The diagram shows the sites where samples have been collected and physico-chemically 
characterized according to the literature (stacks, filters and sludges, indoor air, outdoor air)

Figure 2: Sampling points and manganese sources

Figure 3: SEM images (secondary electrons) of particles in PM10 samples collected at CCV site 
(labels correspond to cluster number as given in Table 2)

Figure 4: SEM images (back-scattered electrons) of particles in deposition samples collected at 
CCV site (labels correspond to cluster number and indicate the type of particle as defined in Table 
3)

Figure 5: X-ray diffractograms of PM10 collected at CROS site. Peak labels: Gy: gypsum; Q: 
quartz; Ca: calcite; Rh: rhodochrosite; M: manganese dioxide; A: aluminum silicate; B: bixbyite

Figure 6: X-ray diffractograms of Deposition (Dep) and Roof Dust (RD) collected at CCV site. 
Peak labels: Gy: gypsum; Q: quartz; Ca: calcite; D: dolomite; Rh: rhodochrosite; Bi: bixbyite; 
Mi: Manganese iron silicon; Ma: manganocalcite; Bu: bustamite; Mc: microcline; Ha: 
hausmannite; S: alabandite; Mo: manganosite or iron manganese oxide; H: hematite; F: 
magnetite; Si: silicates.

Figure 7: Comparison between relative elemental composition of cluster 1D and the weighted 
annual average composition of FeMn HC, FeMn MC and SiMn.

Figure 8: Comparison between relative elemental composition of cluster 2D and several SiMn 
slags.

Figure 9: Comparison between relative elemental composition of cluster 4D and a high-Mn FeMn 
slag.
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Table 1: Mean values and standard deviation (SD) of Mn and Fe, and Mn/Fe ratio in PM10, 
insoluble fraction of the atmospheric deposition and roof dust samples (RD)

Metal PM10
(ng/m3)

Atmospheric 
deposition

(µg/m2·day)

Roof dust (RD)
<70 µm 
(mg/kg)

Roof dust (RD)
70-100 µm 

(mg/kg) 
CROS sitea CCV siteb CCV sitec CCV sited CCV sited

Mean SD Mean SD Mean SD Mean SD Mean SD
Mn 231.7 308.7 670.4 652.0 11,355 2,912 322,507 139,275 161,537 211,227
Fe 279.4 225.5 322.0 192.8 5,316 1,468 159,859 44,523 199,517 191,662

Mn/Fe 0.83 2.24 2.14 2.02 0.81

a Sampling period: January 2015-January-2016 (1 sample per week, a total of 52 samples)
b Sampling period: September 2016 (28 daily samples) 
c Sampling period: 2015-2016. Monthly mean values (6 samples). Values correspond to the insoluble fraction of the atmospheric 
deposition.
d Average value of two samples.
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Table 2: Types of particles evidenced in PM10 collected at CCV site using SEM-EDX after 
Hierarchical Cluster Analysis of a dataset containing the individual composition of 1000 particles 
and corresponding mean diameter (% in brackets corresponds to relative mass composition; 
elements with Z<=8 were not considered).

Cluster
Relative

Abundance 
(%)

Mean
Diameter 

(µm)
Composition

1P 21.9 0.67 Si(43) K(8) Mn(36)
2P 15.5 1.08 Fe(95)
3P 12.9 0.92 Si(16) Mn(65)
4P 10.7 0.69 Si(35) K(6) Mn(33) Zn(18)
5P 10.0 0.93 Mn(91)
6P 9.2 1.77 Al(15) Si(46) S(8)
7P 4.6 2.53 Si (12) S(17) Ca(39) Mn(18)
8P 3.5 1.43 Si(12) S(11) Fe(62)
9P 3.3 1.95 Si(94)
10P 2.6 0.98 S(44) Ca(55)
11P 1.9 2.26 Ca(90)
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Table 3 – Types of particles (% in brackets corresponds to relative mass composition; elements with Z<=8 were not considered) evidenced in deposition 
samples and roof dust collected at CCV using SEM-EDX after Hierarchical Cluster Analysis of 4 dataset containing the individual composition of 1000 
particles, corresponding relative abundance (minimum and maximum values), mean diameter and attribution. 

Relative abundance (%)
Cluster Deposition

(n=3)
Roof dust 

(n=1)

Mean diameter
(µm) Composition

1D 12-41 29 24.8 Al(2) Si(5) Mn(77) Fe(12)
2D 12-28 13 25.3 Mg(4) Al(11) Si(34) S(2) K(2) Ca(26) Mn(19)
3D 12-18 20 19.9 Mg(3) Al(8) Si(18) S(3) Ca(4) Mn(51) Fe(10)
4D 10-27 19 13.4 Al(19) Si(47) S(2) K(3) Ca(5) Mn(10) Fe(9)
5D 0-9 0 33.9 Mg(4) Al(7) Si(21) K(1) Ca(27) Mn(38)
6D 4 7 23.7 Al(4) Si(87)
7D 2-3 2 13.0 Al(2) Si(3) Mn(2) Fe(88)
8D 0-7 6 13.2 Al(10) Si(21) S(4) Ca(4) Mn(12) Fe(38)
9D 0-2 0 14.6 Al(35) Si(5) S(6) Ca(33) Mn(10)
10D 0-7 4 9.7 Mg(7) Al(5) Si(9) S(6) Ca(67)
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Table 4: Crystalline phases identified by X-ray Diffraction in PM10, deposition (Dep) and roof 
dust (RD) samples collected at CROS and CCV sites (x = detected).

Crystalline Phase Formula Labels PM samples

PM
10

a

PM
10

b

D
ep

a

D
ep

b

D
ep

c

R
D

a<
70

µm

R
D

b 
(7

0-
10

0µ
m

)

Gypsum CaSO4, 2H2O Gy x x
Quartz SiO2 Q x x x x x x x
Aluminum silicate Al2SiO5 A x
Calcium carbonate CaCO3 Ca x x x x x x
Bixbyite Mn2O3 Bi x x x x x x
Bixbyite FeMnO3 Bi x x x x x
Manganese dioxide MnO2 M x
Rhodochrosite MnCO3 Rh x x x x x x
Manganosite or 
Iron manganese oxide

MnO or
(FeO)0.099(MnO)0.901

Mo x x x x x

Hausmannite Mn3O4 Ha x x x x x
Alabandite MnS S x x x
Dolomite CaMg(CO3)2 D x x x
Bustamite CaMn(SiO3)2 Bu x
Hematite Fe2O3 H x
Magnetite Fe3O4 F x
Manganese iron silicon Mn4FeSi3 Mi x x x x x
Silicates (Glaucochroite 
or Kirschsteinite)

(Ca,Mn)2SiO4
Ca(Fe,Mg)SiO4

Si x x

Manganocalcite (Ca,Mn)CO3 Ma x x
Microcline KAlSi3O8 Mc x x


