2,965 research outputs found

    Sequence to Sequence Mixture Model for Diverse Machine Translation

    Full text link
    Sequence to sequence (SEQ2SEQ) models often lack diversity in their generated translations. This can be attributed to the limitation of SEQ2SEQ models in capturing lexical and syntactic variations in a parallel corpus resulting from different styles, genres, topics, or ambiguity of the translation process. In this paper, we develop a novel sequence to sequence mixture (S2SMIX) model that improves both translation diversity and quality by adopting a committee of specialized translation models rather than a single translation model. Each mixture component selects its own training dataset via optimization of the marginal loglikelihood, which leads to a soft clustering of the parallel corpus. Experiments on four language pairs demonstrate the superiority of our mixture model compared to a SEQ2SEQ baseline with standard or diversity-boosted beam search. Our mixture model uses negligible additional parameters and incurs no extra computation cost during decoding.Comment: 11 pages, 5 figures, accepted to CoNLL201

    Fast Exact Search in Hamming Space with Multi-Index Hashing

    Full text link
    There is growing interest in representing image data and feature descriptors using compact binary codes for fast near neighbor search. Although binary codes are motivated by their use as direct indices (addresses) into a hash table, codes longer than 32 bits are not being used as such, as it was thought to be ineffective. We introduce a rigorous way to build multiple hash tables on binary code substrings that enables exact k-nearest neighbor search in Hamming space. The approach is storage efficient and straightforward to implement. Theoretical analysis shows that the algorithm exhibits sub-linear run-time behavior for uniformly distributed codes. Empirical results show dramatic speedups over a linear scan baseline for datasets of up to one billion codes of 64, 128, or 256 bits

    Dynamic Facility Location via Exponential Clocks

    Full text link
    The \emph{dynamic facility location problem} is a generalization of the classic facility location problem proposed by Eisenstat, Mathieu, and Schabanel to model the dynamics of evolving social/infrastructure networks. The generalization lies in that the distance metric between clients and facilities changes over time. This leads to a trade-off between optimizing the classic objective function and the "stability" of the solution: there is a switching cost charged every time a client changes the facility to which it is connected. While the standard linear program (LP) relaxation for the classic problem naturally extends to this problem, traditional LP-rounding techniques do not, as they are often sensitive to small changes in the metric resulting in frequent switches. We present a new LP-rounding algorithm for facility location problems, which yields the first constant approximation algorithm for the dynamic facility location problem. Our algorithm installs competing exponential clocks on the clients and facilities, and connect every client by the path that repeatedly follows the smallest clock in the neighborhood. The use of exponential clocks gives rise to several properties that distinguish our approach from previous LP-roundings for facility location problems. In particular, we use \emph{no clustering} and we allow clients to connect through paths of \emph{arbitrary lengths}. In fact, the clustering-free nature of our algorithm is crucial for applying our LP-rounding approach to the dynamic problem
    • …
    corecore