187 research outputs found

    Percutaneous closure of PFO in patients with reduced oxygen saturation at rest and during exercise : short- and long-term results

    Get PDF
    Background. A patent foramen ovale (PFO) is a rare cause of hypoxemia and clinical symptoms of dyspnea. Due to a right-to-left shunt, desaturated blood enters the systemic circulation in a subset of patients resulting in dyspnea and a subsequent reduction in quality of life (QoL). Percutaneous closure of PFO is the treatment of choice. Objectives. This retrospective multicentre study evaluates short- and long-term results of percutaneous closure of PFO in patients with dyspnea and/or reduced oxygen saturation. Methods. Patients with respiratory symptoms were selected from databases containing all patients percutaneously closed between January 2000 and September 2018. Improvement in dyspnea, oxygenation, and QoL was investigated using pre- and postprocedural lung function parameters and two postprocedural questionnaires (SF-36 and PFSDQ-M). Results. The average follow-up period was 36 [12-43] months, ranging from 0 months to 14 years. Percutaneous closure was successful in 15 of the 16 patients. All patients reported subjective improvement in dyspnea immediately after device deployment, consistent with their improvement in oxygen saturation (from 90 +/- 6% to 94 [92-97%] on room air and in upright position) (p<0.05). Both questionnaires also indicated an improvement of dyspnea and QoL after closure. The two early and two late deaths were unrelated to the procedure. Conclusion. PFO-related dyspnea and/or hypoxemia can be treated successfully with a percutaneous intervention with long-lasting benefits on oxygen saturation, dyspnea, and QoL

    Measurement of the Splitting Function in &ITpp &ITand Pb-Pb Collisions at root&ITsNN&IT=5.02 TeV

    Get PDF
    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.Peer reviewe

    Measurement of nuclear modification factors of gamma(1S)), gamma(2S), and gamma(3S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    The cross sections for ϒ(1S), ϒ(2S), and ϒ(3S) production in lead-lead (PbPb) and proton-proton (pp) collisions at √sNN = 5.02 TeV have been measured using the CMS detector at the LHC. The nuclear modification factors, RAA, derived from the PbPb-to-pp ratio of yields for each state, are studied as functions of meson rapidity and transverse momentum, as well as PbPb collision centrality. The yields of all three states are found to be significantly suppressed, and compatible with a sequential ordering of the suppression, RAA(ϒ(1S)) > RAA(ϒ(2S)) > RAA(ϒ(3S)). The suppression of ϒ(1S) is larger than that seen at √sNN = 2.76 TeV, although the two are compatible within uncertainties. The upper limit on the RAA of ϒ(3S) integrated over pT, rapidity and centrality is 0.096 at 95% confidence level, which is the strongest suppression observed for a quarkonium state in heavy ion collisions to date. © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.Peer reviewe

    Electroweak production of two jets in association with a Z boson in proton-proton collisions root s =13 TeV

    Get PDF
    A measurement of the electroweak (EW) production of two jets in association with a Z boson in proton-proton collisions at root s = 13 TeV is presented, based on data recorded in 2016 by the CMS experiment at the LHC corresponding to an integrated luminosity of 35.9 fb(-1). The measurement is performed in the lljj final state with l including electrons and muons, and the jets j corresponding to the quarks produced in the hard interaction. The measured cross section in a kinematic region defined by invariant masses m(ll) > 50 GeV, m(jj) > 120 GeV, and transverse momenta P-Tj > 25 GeV is sigma(EW) (lljj) = 534 +/- 20 (stat) fb (syst) fb, in agreement with leading-order standard model predictions. The final state is also used to perform a search for anomalous trilinear gauge couplings. No evidence is found and limits on anomalous trilinear gauge couplings associated with dimension-six operators are given in the framework of an effective field theory. The corresponding 95% confidence level intervals are -2.6 <cwww/Lambda(2) <2.6 TeV-2 and -8.4 <cw/Lambda(2) <10.1 TeV-2. The additional jet activity of events in a signal-enriched region is also studied, and the measurements are in agreement with predictions.Peer reviewe

    Inclusive Search for a Highly Boosted Higgs Boson Decaying to a Bottom Quark-Antiquark Pair

    Get PDF
    © 2018 CERN. An inclusive search for the standard model Higgs boson (H) produced with large transverse momentum (pT) and decaying to a bottom quark-antiquark pair (bb) is performed using a data set of pp collisions at s=13 TeV collected with the CMS experiment at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb-1. A highly Lorentz-boosted Higgs boson decaying to bb is reconstructed as a single, large radius jet, and it is identified using jet substructure and dedicated b tagging techniques. The method is validated with Z→bb decays. The Z→bb process is observed for the first time in the single-jet topology with a local significance of 5.1 standard deviations (5.8 expected). For a Higgs boson mass of 125 GeV, an excess of events above the expected background is observed (expected) with a local significance of 1.5 (0.7) standard deviations. The measured cross section times branching fraction for production via gluon fusion of H→bb with reconstructed pT > 450 GeV and in the pseudorapidity range -2.5 < η < 2.5 is 74±48(stat)-10+17(syst) fb, which is consistent within uncertainties with the standard model prediction

    Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at √s=13 TeV

    Get PDF
    Search results are presented for physics beyond the standard model in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum. The data sample corresponds to an integrated luminosity of 35.9 fb−1 of proton-proton collisions at s√=13 TeV collected with the CMS detector at the LHC in 2016. The analysis uses the invariant mass of the lepton pair, searching for a kinematic edge or a resonant-like excess compatible with the Z boson mass. The search for a kinematic edge targets production of particles sensitive to the strong force, while the resonance search targets both strongly and electroweakly produced new physics. The observed yields are consistent with the expectations from the standard model, and the results are interpreted in the context of simplified models of supersymmetry. In a gauge mediated supersymmetry breaking (GMSB) model of gluino pair production with decay chains including Z bosons, gluino masses up to 1500–1770 GeV are excluded at the 95% confidence level depending on the lightest neutralino mass. In a model of electroweak chargino-neutralino production, chargino masses as high as 610 GeV are excluded when the lightest neutralino is massless. In GMSB models of electroweak neutralino-neutralino production, neutralino masses up to 500-650 GeV are excluded depending on the decay mode assumed. Finally, in a model with bottom squark pair production and decay chains resulting in a kinematic edge in the dilepton invariant mass distribution, bottom squark masses up to 980–1200 GeV are excluded depending on the mass of the next-to-lightest neutralino

    Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Results are presented from a search for the direct electroweak production of charginos and neutralinos in signatures with either two or more leptons (electrons or muons) of the same electric charge, or with three or more leptons, which can include up to two hadronically decaying tau leptons. The results are based on a sample of protonproton collision data collected at p s = 13TeV, recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb1. The observed event yields are consistent with the expectations based on the standard model. The results are interpreted in simpli ed models of supersymmetry describing various scenarios for the production and decay of charginos and neutralinos. Depending on the model parameters chosen, mass values between 180GeV and 1150 GeV are excluded at 95% CL. These results signi cantly extend the parameter space probed for these particles in searches at the LHC. In addition, results are presented in a form suitable for alternative theoretical interpretations.Sponsoring Consortium for Open Access Publishing in Particle Physic

    Pseudorapidity and transverse momentum dependence of flow harmonics in pPb and PbPb collisions

    Get PDF
    A search has been performed for heavy resonances decaying to ZZ or ZW in 2l2q final states, with two charged leptons (l = e, mu) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W' bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.A search has been performed for heavy resonances decaying to ZZ or ZW in 2l2q final states, with two charged leptons (l = e, mu) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W' bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.Measurements of azimuthal angular correlations are presented for high-multiplicity pPb collisions at root s(NN) = 5.02 TeV and peripheral PbPb collisions at root s(NN) = 2.76 TeV. The data used in this work were collected with the Compact Muon Solenoid (CMS) detector at the European Organization for Nuclear Research (CERN) Large Hadron Collider (LHC). Fourier coefficients as functions of transverse momentum and pseudorapidity are studied using the scalar product method; four-, six-, and eight-particle cumulants; and the Lee-Yang zero technique. The influence of event plane decorrelation is evaluated using the scalar product method and found to account for most of the observed pseudorapidity dependence.Peer reviewe
    corecore