415 research outputs found

    Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models

    Get PDF
    We investigate Arctic tropospheric composition using ground-based Fourier transform infrared (FTIR) solar absorption spectra, recorded at the Polar Environment Atmospheric Research Laboratory (PEARL, Eureka, Nunavut, Canada, 80°05' N, 86°42' W) and at Thule (Greenland, 76°53' N, −68°74' W) from 2008 to 2012. The target species, carbon monoxide (CO), hydrogen cyanide (HCN), ethane (C_2H_6), acetylene (C_2H_2), formic acid (HCOOH), and formaldehyde (H_2CO) are emitted by biomass burning and can be transported from mid-latitudes to the Arctic. By detecting simultaneous enhancements of three biomass burning tracers (HCN, CO, and C_2H_6), ten and eight fire events are identified at Eureka and Thule, respectively, within the 5-year FTIR time series. Analyses of Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model back-trajectories coupled with Moderate Resolution Imaging Spectroradiometer (MODIS) fire hotspot data, Stochastic Time-Inverted Lagrangian Transport (STILT) model footprints, and Ozone Monitoring Instrument (OMI) UV aerosol index maps, are used to attribute burning source regions and travel time durations of the plumes. By taking into account the effect of aging of the smoke plumes, measured FTIR enhancement ratios were corrected to obtain emission ratios and equivalent emission factors. The means of emission factors for extratropical forest estimated with the two FTIR data sets are 0.40 ± 0.21 g kg^(−1) for HCN, 1.24 ± 0.71 g kg^(−1) for C_2H_6, 0.34 ± 0.21 g kg^(−1) for C_2H_2, and 2.92 ± 1.30 g kg^(−1) for HCOOH. The emission factor for CH_3OH estimated at Eureka is 3.44 ± 1.68 g kg^(−1). To improve our knowledge concerning the dynamical and chemical processes associated with Arctic pollution from fires, the two sets of FTIR measurements were compared to the Model for OZone And Related chemical Tracers, version 4 (MOZART-4). Seasonal cycles and day-to-day variabilities were compared to assess the ability of the model to reproduce emissions from fires and their transport. Good agreement in winter confirms that transport is well implemented in the model. For C_2H_6, however, the lower wintertime concentration estimated by the model as compared to the FTIR observations highlights an underestimation of its emission. Results show that modeled and measured total columns are correlated (linear correlation coefficient r > 0.6 for all gases except for H_2CO at Eureka and HCOOH at Thule), but suggest a general underestimation of the concentrations in the model for all seven tropospheric species in the high Arctic

    Emissions of trace gases from Australian temperate forest fires: emission factors and dependence on modified combustion efficiency

    Get PDF
    We characterised trace gas emissions from Australian temperate forest fires through a mixture of open-path Fourier transform infrared (OP-FTIR) measurements and selective ion flow tube mass spectrometry (SIFT-MS) and White cell FTIR analysis of grab samples. We report emission factors for a total of 25 trace gas species measured in smoke from nine prescribed fires. We find significant dependence on modified combustion efficiency (MCE) for some species, although regional differences indicate that the use of MCE as a proxy may be limited. We also find that the fire-integrated MCE values derived from our in situ on-the-ground open-path measurements are not significantly different from those reported for airborne measurements of smoke from fires in the same ecosystem. We then compare our average emission factors to those measured for temperate forest fires elsewhere (North America) and for fires in another dominant Australian ecosystem (savanna) and find significant differences in both cases. Indeed, we find that although the emission factors of some species agree within 20 %, including those of hydrogen cyanide, ethene, methanol, formaldehyde and 1,3-butadiene, others, such as acetic acid, ethanol, monoterpenes, ammonia, acetonitrile and pyrrole, differ by a factor of 2 or more. This indicates that the use of ecosystem-specific emission factors is warranted for applications involving emissions from Australian forest fires

    Field measurements of trace gases emitted by prescribed fires in southeastern US pine forests using an open-path FTIR system

    Get PDF
    We report trace-gas emission factors from three pine-understory prescribed fires in South Carolina, US measured during the fall of 2011. The fires were more intense than many prescribed burns because the fuels included mature pine stands not subjected to prescribed fire in decades that were lit following an extended drought. Emission factors were measured with a fixed open-path Fourier transform infrared (OP-FTIR) system that was deployed on the fire control lines. We compare these emission factors to those measured with a roving, point sampling, land-based FTIR and an airborne FTIR deployed on the same fires. We also compare to emission factors measured by a similar OP-FTIR system deployed on savanna fires in Africa. The data suggest that the method used to sample smoke can strongly influence the relative abundance of the emissions that are observed. The majority of fire emissions were lofted in the convection column and were sampled by the airborne FTIR. The roving, ground-based, point sampling FTIR measured the contribution of individual residual smoldering combustion fuel elements scattered throughout the burn site. The OP-FTIR provided a ~ 30 m path-integrated sample of emissions transported to the fixed path via complex ground-level circulation. The OP-FTIR typically probed two distinct combustion regimes, "flaming-like" (immediately after adjacent ignition and before the adjacent plume achieved significant vertical development) and "smoldering-like." These two regimes are denoted "early" and "late", respectively. The path-integrated sample of the ground-level smoke layer adjacent to the fire from the OP-FTIR provided our best estimate of fire-line exposure to smoke for wildland fire personnel. We provide a table of estimated fire-line exposures for numerous known air toxics based on synthesizing results from several studies. Our data suggest that peak exposures are more likely to challenge permissible exposure limits for wildland fire personnel than shift-average (8 h) exposures

    Current estimates of biogenic emissions from Eucalypts uncertain for Southeast Australia

    Get PDF
    The biogenic emissions of isoprene and monoterpenes are one of the main drivers of atmospheric photochemistry, including oxidant and secondary organic aerosol production. In this paper, the emission rates of isoprene and monoterpenes from Australian vegetation are investigated for the first time using the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGANv2.1); the CSIRO chemical transport model; and atmospheric observations of isoprene, monoterpenes and isoprene oxidation products (methacrolein and methyl vinyl ketone). Observations from four field campaigns during three different seasons are used, covering urban, coastal suburban and inland forest areas. The observed concentrations of isoprene and monoterpenes were of a broadly similar magnitude, which may indicate that southeast Australia holds an unusual position where neither chemical species dominates. The model results overestimate the observed atmospheric concentrations of isoprene (up to a factor of 6) and underestimate the monoterpene concentrations (up to a factor of 4). This may occur because the emission rates currently used in MEGANv2.1 for Australia are drawn mainly from young eucalypt trees (\u3c 7 years), which may emit more isoprene than adult trees. There is no single increase/decrease factor for the emissions which suits all seasons and conditions studied. There is a need for further field measurements of in situ isoprene and monoterpene emission fluxes in Australia

    Acetylene (C2H2) and hydrogen cyanide (HCN) from IASI satellite observations: Global distributions, validation, and comparison with model

    Get PDF
    We present global distributions of C2_{2}H2_{2} and hydrogen cyanide (HCN) total columns derived from the Infrared Atmospheric Sounding Interferometer (IASI) for the years 2008–2010. These distributions are obtained with a fast method allowing to retrieve C2_{2}H2_{2} abundance globally with a 5% precision and HCN abundance in the tropical (subtropical) belt with a 10% (25 %) precision. IASI data are compared for validation purposes with ground-based Fourier transform infrared (FTIR) spectrometer measurements at four selected stations.We show that there is an overall agreement between the ground-based and space measurements with correlation coefficients for daily mean measurements ranging from 0.28 to 0.81, depending on the site. Global C2_{2}H2_{2} and subtropical HCN abundances retrieved from IASI spectra show the expected seasonality linked to variations in the anthropogenic emissions and seasonal biomass burning activity, as well as exceptional events, and are in good agreement with previous spaceborne studies. Total columns simulated by the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) are compared to the ground-based FTIR measurements at the four selected stations. The model is able to capture the seasonality in the two species in most of the cases, with correlation coefficients for daily mean measurements ranging from 0.50 to 0.86, depending on the site. IASI measurements are also compared to the distributions from MOZART-4. Seasonal cycles observed from satellite data are reasonably well reproduced by the model with correlation coefficients ranging from -0.31 to 0.93 for C2_{2}H2_{2} daily means, and from 0.09 to 0.86 for HCN daily means, depending on the considered region. However, the anthropogenic (biomass burning) emissions used in the model seem to be overestimated (underestimated), and a negative global mean bias of 1% (16 %) of the model relative to the satellite observations was found for C2_{2}H2_{2} (HCN)

    Composition of Clean Marine Air and Biogenic Influences on VOCs during the MUMBA Campaign

    Get PDF
    Volatile organic compounds (VOCs) are important precursors to the formation of ozone and fine particulate matter, the two pollutants of most concern in Sydney, Australia. Despite this importance, there are very few published measurements of ambient VOC concentrations in Australia. In this paper, we present mole fractions of several important VOCs measured during the campaign known as MUMBA (Measurements of Urban, Marine and Biogenic Air) in the Australian city of Wollongong (34°S). We particularly focus on measurements made during periods when clean marine air impacted the measurement site and on VOCs of biogenic origin. Typical unpolluted marine air mole fractions during austral summer 2012-2013 at latitude 34°S were established for CO2 (391.0 ± 0.6 ppm), CH4 (1760.1 ± 0.4 ppb), N2O (325.04 ± 0.08 ppb), CO (52.4 ± 1.7 ppb), O3 (20.5 ± 1.1 ppb), acetaldehyde (190 ± 40 ppt), acetone (260 ± 30 ppt), dimethyl sulphide (50 ± 10 ppt), benzene (20 ± 10 ppt), toluene (30 ± 20 ppt), C8H10 aromatics (23 ± 6 ppt) and C9H12 aromatics (36 ± 7 ppt). The MUMBA site was frequently influenced by VOCs of biogenic origin from a nearby strip of forested parkland to the east due to the dominant north-easterly afternoon sea breeze. VOCs from the more distant densely forested escarpment to the west also impacted the site, especially during two days of extreme heat and strong westerly winds. The relative amounts of different biogenic VOCs observed for these two biomes differed, with much larger increases of isoprene than of monoterpenes or methanol during the hot westerly winds from the escarpment than with cooler winds from the east. However, whether this was due to different vegetation types or was solely the result of the extreme temperatures is not entirely clear. We conclude that the clean marine air and biogenic signatures measured during the MUMBA campaign provide useful information about the typical abundance of several key VOCs and can be used to constrain chemical transport model simulations of the atmosphere in this poorly sampled region of the world. © 2019 The Author

    The MUMBA campaign: measurements of urban, marine and biogenic air

    Get PDF
    The Measurements of Urban, Marine and Biogenic Air (MUMBA) campaign took place in Wollongong, New South Wales (a small coastal city approximately 80 km south of Sydney, Australia) from 21 December 2012 to 15 February 2013. Like many Australian cities, Wollongong is surrounded by dense eucalyptus forest, so the urban airshed is heavily influenced by biogenic emissions. Instruments were deployed during MUMBA to measure the gaseous and aerosol composition of the atmosphere with the aim of providing a detailed characterisation of the complex environment of the ocean–forest–urban interface that could be used to test the skill of atmospheric models. The gases measured included ozone, oxides of nitrogen, carbon monoxide, carbon dioxide, methane and many of the most abundant volatile organic compounds. The aerosol characterisation included total particle counts above 3 nm, total cloud condensation nuclei counts, mass concentration, number concentration size distribution, aerosol chemical analyses and elemental analysis. The campaign captured varied meteorological conditions, including two extreme heat events, providing a potentially valuable test for models of future air quality in a warmer climate. There was also an episode when the site sampled clean marine air for many hours, providing a useful additional measure of the background concentrations of these trace gases within this poorly sampled region of the globe. In this paper we describe the campaign, the meteorology and the resulting observations of atmospheric composition in general terms in order to equip the reader with a sufficient understanding of the Wollongong regional influences to use the MUMBA datasets as a case study for testing a chemical transport model. © Author(s) 2017.The data are available from PANGAEA (http://doi.pangaea.de/10.1594/PANGAEA.871982)

    Rapid spatiotemporal variations in rift structure during development of the Corinth Rift, central Greece

    Get PDF
    The Corinth Rift, central Greece, enables analysis of early rift development as it is young (<5Ma) and highly active and its full history is recorded at high resolution by sedimentary systems. A complete compilation of marine geophysical data, complemented by onshore data, is used to develop a high-resolution chronostratigraphy and detailed fault history for the offshore Corinth Rift, integrating interpretations and reconciling previous discrepancies. Rift migration and localization of deformation have been significant within the rift since inception. Over the last circa 2Myr the rift transitioned from a spatially complex rift to a uniform asymmetric rift, but this transition did not occur synchronously along strike. Isochore maps at circa 100kyr intervals illustrate a change in fault polarity within the short interval circa 620-340ka, characterized by progressive transfer of activity from major south dipping faults to north dipping faults and southward migration of discrete depocenters at ~30m/kyr. Since circa 340ka there has been localization and linkage of the dominant north dipping border fault system along the southern rift margin, demonstrated by lateral growth of discrete depocenters at ~40m/kyr. A single central depocenter formed by circa 130ka, indicating full fault linkage. These results indicate that rift localization is progressive (not instantaneous) and can be synchronous once a rift border fault system is established. This study illustrates that development processes within young rifts occur at 100kyr timescales, including rapid changes in rift symmetry and growth and linkage of major rift faults

    In situ tropical peatland fire emission factors and their variability, as determined by field measurements in Peninsula Malaysia.

    Get PDF
    Fires in tropical peatlands account for >25% of estimated total greenhouse gas emissions from deforestation and degradation. Despite significant global and regional impacts, our understanding of specific gaseous fire emission factors (EFs) from tropical peat burning is limited to a handful of studies. Furthermore, there is substantial variability in EFs between sampled fires and/or studies. For example, methane EFs vary by 91% between studies. Here we present new fire EFs for the tropical peatland ecosystem; the first EFs measured for Malaysian peatlands, and only the second comprehensive study of EFs in this crucial environment. During August 2015 (under El Niño conditions) and July 2016, we embarked on field campaigns to measure gaseous emissions at multiple peatland fires burning on deforested land in Southeast Pahang (2015) and oil palm plantations in North Selangor (2016), Peninsula Malaysia. Gaseous emissions were measured using open-path Fourier transform infrared spectroscopy. The IR spectra were used to retrieve mole fractions of twelve different gases present within the smoke (including carbon dioxide and methane), and these measurements used to calculate EFs. Peat samples were taken at each burn site for physicochemical analysis and to explore possible relationships between specific physicochemical properties and fire EFs. Here we present the first evidence to indicate that substrate bulk density affects methane fire EFs reported here. This novel explanation of inter-plume, within-biome variability should be considered by those undertaking greenhouse gas accounting and haze forecasting in this region, and is of importance to peatland management, particularly with respect to artificial compaction
    corecore