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Abstract. We present global distributions of C2H2 and hy-

drogen cyanide (HCN) total columns derived from the In-

frared Atmospheric Sounding Interferometer (IASI) for the

years 2008–2010. These distributions are obtained with a fast

method allowing to retrieve C2H2 abundance globally with

a 5 % precision and HCN abundance in the tropical (sub-

tropical) belt with a 10 % (25 %) precision. IASI data are

compared for validation purposes with ground-based Fourier

transform infrared (FTIR) spectrometer measurements at

four selected stations. We show that there is an overall agree-

ment between the ground-based and space measurements

with correlation coefficients for daily mean measurements

ranging from 0.28 to 0.81, depending on the site. Global

C2H2 and subtropical HCN abundances retrieved from IASI

spectra show the expected seasonality linked to variations in

the anthropogenic emissions and seasonal biomass burning

activity, as well as exceptional events, and are in good agree-

ment with previous spaceborne studies. Total columns simu-

lated by the Model for Ozone and Related Chemical Tracers,

version 4 (MOZART-4) are compared to the ground-based

FTIR measurements at the four selected stations. The model

is able to capture the seasonality in the two species in most of

the cases, with correlation coefficients for daily mean mea-

surements ranging from 0.50 to 0.86, depending on the site.

IASI measurements are also compared to the distributions

from MOZART-4. Seasonal cycles observed from satellite

data are reasonably well reproduced by the model with cor-

relation coefficients ranging from −0.31 to 0.93 for C2H2

daily means, and from 0.09 to 0.86 for HCN daily means,

depending on the considered region. However, the anthro-

pogenic (biomass burning) emissions used in the model seem

to be overestimated (underestimated), and a negative global

mean bias of 1 % (16 %) of the model relative to the satellite

observations was found for C2H2 (HCN).
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Table 1. Global HCN and C2H2 sources and sinks (Tg yr−1).

HCN C2H2

Sources

Biomass burning 0.1–3.18 1.6

Biofuels 0.21 3.3

Fossil fuel 0.02–0.04 1.7

Residential coal 0.2

Biogenic 0.2

Total 0.47–3.22 6.6

Sinks

Ocean uptake 1.1–2.6

Reaction with OH 0.3 ∼ 6.6

Photolysis 0.2× 10−2

Reaction with O(1D) 0.3× 10−3

Total 1.4–2.9 ∼ 6.6

1 Introduction

Hydrogen cyanide (HCN) and acetylene (or ethyne; C2H2)

are ubiquitous atmospheric trace gases with medium life-

time, which are frequently used as indicators of combustion

sources and as tracers for atmospheric transport and chem-

istry. Typical abundances of C2H2 (HCN) range from 1 to 2

(2 to 5)× 1015 molec cm−2 for background levels, and from

8 to 20 (30 to 40)× 1015 molec cm−2 for biomass burning

plume levels (Rinsland et al., 1999, 2001, 2002; Zander et al.,

1991; Zhao et al., 2002; Clarisse et al., 2011a; Vigouroux et

al., 2012; Duflot et al., 2013). Table 1 summarizes the main

sources and sinks for HCN and C2H2. For HCN, biomass

burning is the primary source, followed by biofuel and fos-

sil fuel combustions, and its primary sink is thought to be

ocean uptake (Li et al., 2000, 2003). For C2H2, biofuel com-

bustion is considered to be the dominant source, followed

by fossil fuel combustion and biomass burning (Xiao et al.,

2007). Reaction with hydroxyl radical (OH) is the main sink

for C2H2, which may also act as a precursor of secondary

organic aerosols (Volkamer et al., 2009).

With a tropospheric lifetime of 2–4 weeks for C2H2 (Lo-

gan et al., 1981) and 5–6 months for HCN (Li et al., 2000;

Singh et al., 2003), these two species are interesting trac-

ers for studying atmospheric transport. The study of the ratio

C2H2 /CO (carbon monoxide) can also help to estimate the

age of emitted plumes (Xiao et al., 2007).

Long-term local measurements of HCN and C2H2 are

sparse and mainly performed from ground-based Fourier

transform infrared (FTIR) spectrometer at selected stations

of the Network for the Detection of Atmospheric Compo-

sition Change (NDACC; http://www.ndacc.org) (Vigouroux

et al., 2012, and references therein). Global distributions of

HCN and C2H2 may thus help to reduce the uncertainties re-

maining with regard to the magnitude of their sources and

sinks, as well as to their spatial distribution and seasonality

in the atmosphere (Li et al., 2009; Parker et al., 2011).

Satellite sounders have provided considerable new infor-

mation in the past years, with measurements from the At-

mospheric Chemistry Experiment (ACE-FTIR) (Lupu et al.,

2009; González Abad et al., 2011), the Michelson Interfer-

ometer for Passive Atmospheric Sounding (MIPAS) (Parker

et al., 2011; Wiegele et al., 2012; Glatthor et al., 2015) and

the microwave limb sounder (MLS) (Pumphrey et al., 2011).

These measurements were all made in limb geometry and

consequently mostly in the upper troposphere or higher; also

the spatial sampling from these instruments is limited, mak-

ing it less well-suited when studying dynamical events on

short timescales.

Having a twice daily global coverage and a 12 km diame-

ter footprint at nadir, the Infrared Atmospheric Sounding In-

terferometer (IASI) infrared sounder (Clerbaux et al., 2009)

aboard the MetOp-A satellite has the potential for providing

measurements for these two species globally, and with higher

spatial resolution and temporal sampling than what has been

obtained up to now.

Previous studies have demonstrated that HCN and C2H2

can be observed with the IASI infrared nadir-looking hyper-

spectral sounder, e.g. in a specific biomass burning plume

(Clarisse et al., 2011a), as well as in an anthropogenic pol-

lution plume uplifted in the free troposphere (Clarisse et al.,

2011b). More recently, Duflot et al. (2013) have shown that

HCN and C2H2 columns can be routinely retrieved from

IASI spectra, even in the absence of exceptional columns or

uplift mechanisms, when CO2 line mixing is accounted for

in the inversion scheme. These previous works were based

on an optimal estimation method (OEM) developed and for-

malized by Rodgers (2000).

In this paper, we first present a fast scheme for the global

detection and quantification of HCN and C2H2 total columns

from IASI spectra. We describe 2008–2010 time series and

analyze the seasonality of the columns of these two species

above four NDACC sites in comparison with ground-based

FTIR measurements. We finally present the global distribu-

tions for the years 2008 to 2010 that we compare with model

outputs for these two species.

2 Instrument and method

2.1 IASI

IASI is on board the MetOp-A platform launched in a Sun-

synchronous orbit around the Earth at the end of 2006.

The overpass times are 09:30 and 21:30 MLT (mean local

time). Combining the satellite track with a swath of 2200 km,

IASI provides global coverage of the Earth twice a day

with a footprint of 12 km at nadir. IASI is a Fourier trans-

form spectrometer that measures the thermal infrared radi-

Atmos. Chem. Phys., 15, 10509–10527, 2015 www.atmos-chem-phys.net/15/10509/2015/
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ation emitted by the Earth’s surface and atmosphere in the

645–2760 cm−1 spectral range with a spectral resolution of

0.5 cm−1 apodized and a radiometric noise below 0.2 K be-

tween 645 and 950 cm−1 at 280 K (Clerbaux et al., 2009).

The IASI spectra used in this study are calibrated radiance

spectra provided by EUMETCast near-real-time service.

2.2 Retrieval strategy

Up to now, 24 trace gases have been detected from IASI ra-

diance spectra, including HCN and C2H2 (see Clarisse et

al., 2011a, for the list of detected species), with an OEM

(Rodgers, 2000) implemented in a line by line radiative trans-

fer model called Atmosphit (Coheur et al., 2005). In the cases

of HCN and C2H2, the accuracy of the retrievals has been re-

cently improved by taking into consideration the CO2 line

mixing in the radiative transfer model (Duflot et al., 2013).

This retrieval method, relying on spectral fitting, needs a

high computational power and is time-consuming, especially

when a large number of spectra has to be analyzed and fitted.

This is therefore not suitable for providing global-scale con-

centration distributions of these trace gases in a reasonable

time.

One of the commonly used methods for the fast detection

of trace gases is the brightness temperature difference (BTD)

between a small number of channels, some being sensitive to

the target species, some being not. Such a method has been

used from IASI spectra for sulfur dioxide (SO2) (Clarisse et

al., 2008) and ammonia (NH3) (Clarisse et al., 2009). It is of

particular interest in operational applications (quick alerts) or

when large amounts of data need to be processed. However,

relying on a cautious selection of channels to avoid the con-

tamination with other trace gases, the BTD method does not

fully exploit all the information contained in hyperspectral

measurements. Especially, low concentrations of the target

species may not be detected with such a method.

Walker et al. (2011) presented a fast and reliable method

for the detection of atmospheric trace gases that fully exploits

the spectral range and spectral resolution of hyperspectral in-

struments in a single retrieval step. They used it to retrieve

SO2 total column from a volcanic plume and NH3 total col-

umn above India. More recently, Van Damme et al. (2014)

presented a retrieval scheme to retrieve NH3 from IASI spec-

tra based on the work of Walker et al. (2011), and introduced

a metric called hyperspectral range index (HRI). We use in

the present study a similar approach.

2.2.1 Hyperspectral range index

The method used in this study is a non-iterative pseudo

retrieval method of a single physical variable or target

species x expressed following the formalism developed by

Rodgers (2000):

x̂ = x0+ (K
T Stot−1

ε K)−1KT Stot−1
ε (y−F(x0)), (1)

where y is the spectral measurements, x0 is the linearization

point, F is the forward model (FM), Stot
ε is the covariance

of the total error (random+ systematic), and the Jacobian K

is the derivative of the FM to the target species in a fixed

atmosphere.

Stot
ε can be estimated considering an appropriate ensemble

of N measured spectra, which can be used to build up the

total measurement error covariance Sobs
y :

Stot
ε '

1

N − 1

N∑
j=1

(yj − ȳ)(yj − ȳ)
T
= Sobs

y , (2)

where ȳ is the calculated mean spectrum for the ensemble.

To generate Sobs
y , we randomly chose one million cloud

free spectra observed by IASI all over the world, above

both land and sea, during the year 2009. Then, we applied

a BTD test to remove the spectra contaminated by the tar-

get species. For HCN (C2H2), the wave numbers 716.5 and

732 cm−1 (712.25 and 737.75 cm−1) were used as reference

channels and 712.5 cm−1 (730 cm−1) was used as test chan-

nel (Fig. 1, middle panel). Given the medium lifetimes of

the target species (few weeks for C2H2 to few months for

HCN), and the limited accuracy of the BTD test due to the

weak spectral signatures of the target species, it is likely

that such randomly chosen and filtered spectra still contain

a small amount of the target species whose signal may come

out from the noise. This limitation decreases the sensitivity

of the method, which is discussed in Sect. 2.2.3.

The spectral ranges considered to compute the Sobs
y matri-

ces are 645–800 cm−1 for HCN and 645–845 cm−1 for C2H2

(Fig. 1, top panel). These ranges were chosen as they include

parts of the spectrum which have a relatively strong signal

from the target species but also from the main interfering

species (CO2, H2O and O3; Fig. 1, bottom panel) in order

to maximize the contrast with the spectral background.

Having calculated Sobs
y and , the HRI of a measured spec-

trum y can be defined as

HRI=G(y− ȳ) (3)

with G the measurement contribution function

G= (KT Sobs−1
y K)−1KT Sobs−1

y (4)

The HRI is a dimensionless scalar similar, other than units,

to the apparent column retrieved in Walker et al. (2011). Un-

like the optimal estimation method, no information about the

vertical sensitivity can be extracted. Note also that the use of

a fixed Jacobian to calculate HRI does not allow for generat-

ing meaningful averaging kernels.

2.2.2 Conversion of HRI into total columns

Having calculated the matrices G for HCN and C2H2, each

observed spectrum can be associated through Eq. (3) with

www.atmos-chem-phys.net/15/10509/2015/ Atmos. Chem. Phys., 15, 10509–10527, 2015
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Figure 12. (Top) Simulated spectra in the region of the HCN ν2
band and C2H2 ν5 band. The green (brown) double sided arrow
gives the spectral range used to compute the Sε matrices for HCN
(C2H2). (Middle) Contributions of climatological background lev-
els of HCN and C2H2. (Bottom) Contribution of CO2 (red line),
O3 (green line) and H2O (blue line) to a simulated spectrum for
background concentrations. Calculations have been made for the
US Standard Atmosphere (US Government Printing Office, 1976)
with CO2 concentrations scaled to 390 ppmv.

D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emis-1055

sions in 2006 for the NASA INTEX-B mission, Atmos. Chem.
Phys., 9, 5131-5153, 2009.
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Figure 13. Variations of the HRI with HCN (top) and C2H2 (bot-
tom) column (molec.cm−2) integrated over the 1 km-thick polluted
layer in a standard modeled subtropical atmosphere from forward
model simulations. The colorscale gives the altitude of the polluted
layer.

Figure 1. (Top) Simulated spectra in the region of the HCN ν2 band

and C2H2 ν5 band. The green (brown) double sided arrow gives the

spectral range used to compute the Sε matrices for HCN (C2H2).

(Middle) contributions of climatological background levels of HCN

and C2H2. (Bottom) contribution of CO2 (red line), O3 (green line)

and H2O (blue line) to a simulated spectrum for background con-

centrations. Calculations have been made for the US standard atmo-

sphere (Standard Atmosphere: National Atmospheric and Oceanic

Administration, 1976) with CO2 concentrations scaled to 390 ppmv.

a value of HRI for HCN (HRIHCN) and C2H2 (HRIC2H2
).

These HRIs are only metrics for determining whether lev-

els of the gas are enhanced with respect to the climatologi-

cal background over the vertical levels where the instrument

is sensitive. For a given atmosphere (atm), the main chal-

lenge is then to link the HRI to a column amount of the target

molecule, i.e. to find BHCNatm and BC2H2atm
(in molec cm−2)

such as

[X] = BXatm HRIX, (5)

[X] being the species abundance in molec cm−2.

To determine these coefficients linking the HRIs to total

column amounts, HCN and C2H2 profiles have been con-

structed, with enhanced concentrations of the species located

in a 1 km thick layer, whose altitude is varied from the ground

up to 30 km for HCN and up to 20 km for C2H2 (the choice of

these maximum altitudes are made with respect to the Jaco-

bians of the FM that are shown in Fig. 3 and commented on in

Sect. 2.2.3). Each of the constructed profile has been associ-

ated with a spectrum through the FM of Atmosphit consider-

ing standard absorption profiles from modelled atmospheres

for the other species. The associated values of HRIHCN and

HRIC2H2
have then been computed for each of the simulated

spectra. Figure 2 shows the look up tables (LUTs) of HRIHCN

(top) and HRIC2H2
(bottom) as a function of the abundance

of the target molecule and of the altitude of the polluted layer

in a standard tropical modelled atmosphere (Anderson et al.,

1986). Similar LUTs have been computed for standard tem-

perate (US standard atmosphere) and polar (Anderson et al.,

1986) atmospheres (data not shown). The satellite viewing

angles were taken into account in the HRI calculation sim-

ilarly to Van Damme et al. (2014). One can see that, for

a given atmosphere and for a given altitude of the polluted

layer, the abundances of both species linearly depend on the

HRI value, which validates Eq. (5). For a given atm and a

given species X, the different values of B with respect to

the altitude z of the polluted layer will be noted bXatm(z) and

bXatm(z) (in molec cm−2) in the following.

Figure 3 shows the normalized Jacobians of the FM for

HCN and C2H2 averaged over the spectral ranges given in

Sect. 2.2.1 (645–800 cm−1 for HCN and 645–845 cm−1 for

C2H2) and for each of the three standard modelled atmo-

spheres. These Jacobians express the sensitivity of the FM,

i.e. both the radiative transfer model and IASI (through its

instrumental function), to the target species abundance X in

a fixed atm:

KXatm =

[
∂Fatm

∂X
(z1). . .

∂Fatm

∂X
(zn)

]
= [kXatm(z1). . .kXatm(zn)]. (6)

We then obtain the coefficients BXatm by multiplying the

bXatm(z) by the value of the Jacobian at the altitude z:

BXatm =

n∑
i=1

(
bXatm(zi)× kXatm(zi)

)
with

n∑
i=1

kXatm(zi)= 1. (7)

Applying this method to the three standard modelled at-

mospheres (tropical, temperate and polar), we get a BX value

for each, which we have associated with the corresponding

range of latitude ([±20◦], [±45◦ :±60◦], [±75◦ :±90◦], re-

spectively), and linearly interpolated between. Figure 4 gives

the resulting values of BHCN (blue) and BC2H2
(green) in a

function of the latitude.

Atmos. Chem. Phys., 15, 10509–10527, 2015 www.atmos-chem-phys.net/15/10509/2015/
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Figure 13. Variations of the HRI with HCN (top) and C2H2 (bot-
tom) column (molec.cm−2) integrated over the 1 km-thick polluted
layer in a standard modeled subtropical atmosphere from forward
model simulations. The colorscale gives the altitude of the polluted
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Figure 2. Variations of the HRI with HCN (top) and C2H2 (bottom)

column (molec cm−2) integrated over the 1 km thick polluted layer

in a standard modelled subtropical atmosphere from forward model

simulations. The colour scale gives the altitude of the polluted layer.

2.2.3 Sensitivity and stability of the method

The sensitivity of the method can be assessed from the Jaco-

bians presented in Fig. 3. For HCN, one can see that there is

no sensitivity at the surface and above ∼ 30 km, and the alti-

tude of the sensitivity peak is located close to the tropopause

at ∼ 9 km, ∼ 11 km and ∼ 14 km for the polar, temperate

and tropical atmospheres, respectively. For C2H2, there is no

sensitivity above ∼ 20 km, and the maximum sensitivity is

reached at ∼ 8, ∼ 10 and ∼ 11 km for the polar, temperate

and tropical atmospheres, respectively. The vertical distribu-

tion in a standard temperate atmosphere (US standard atmo-

sphere) is also shown for both species in Fig. 3. These stan-

dard distributions agree reasonably well (in shape and value)

with observed profiles exhibited in previous studies (e.g. Li

et al., 2003; Xiao et al., 2007). The C2H2 Jacobians match

quiet well with the standard distribution of the molecule (i.e.

from the ground up to∼ 20 km), with somehow a lack of sen-

sitivity close to the ground where C2H2 is the most abundant.

For HCN, which shows a nearly “flat” vertical distribution up
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to 30 km, the Jacobians show a lack of sensitivity close to the

ground and above 30 km, where HCN is still present (HCN

distribution decreases down to 60 pptv at 60 km – data not

shown).

The HRIs presented here above are sensitive to the abun-

dance of the target species – this is what they are made for –

and to their vertical distribution. However, once cloudy spec-

tra have been discarded, the measured column amount may

also depend on (1) the proper suppression of the spectral
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background, (2) the conditions of thermal contrast (TC) with

the surface, and (3) the accuracy of the FM to simulate the

spectra used to build up the LUTs. The latter was discussed

already by Duflot et al. (2013). In order to test the impact

of the two first factors (spectral background suppression and

TC) on the retrieved column amount, HCN and C2H2 profiles

have been constructed with varying TC and concentrations

of the interfering and target species. In general thermal con-

trast can be defined as the temperature difference between

the surface and the air temperature at some altitude of inter-

est. We consider here the same definition for the TC as in Van

Damme et al. (2014): the TC is defined here as the difference

between the skin (surface) temperature and that of the air at

an altitude of 1.5 km. These variations in interfering species

abundances and TC were considered to be independent and

were taken within the range ±2 % for CO2 and ±20 % for

H2O and O3, and in the range ±10 K for the TC. For a fixed

column amount of the target species, the HRIs were com-

pared one by one to a HRI corresponding to a standard spec-

trum (i.e. with background concentrations of the interfering

species and a TC equal to zero) and if the difference between

the two HRIs was lower than 10 %, then this fixed abundance

of the target species was tagged as independently detectable

from the listed parameters.

The TC was found to be the major source of HRI variation

for both target species, and a serious cause of limitation only

for HCN. Figure 5 shows the variation of HRIHCN caused

by a TC equal to ±10 K. One can see that the HCN column

amount can be detected with a variation due to the TC be-

low 10 % when its abundance is higher than 0.28, 1.2 and

1.6× 1016 molec cm−2 for the tropical, temperate and polar

atmospheres, respectively. This gives the stability thresholds

above which HCN column amount can be measured with a

10 % confidence in the independence of the retrieval method

to the atmospheric parameters. Consequently, as the stabil-

ity thresholds of the method for HCN in temperate and po-

lar atmospheres are too high (1.2 and 1.6× 1016 molec cm−2,

respectively) to allow for the detection of HCN background

abundances as compared to usual background column of typ-

ically 0.35× 1016 molec cm−2 (Vigouroux et al., 2012; Du-

flot et al., 2013), IASI HCN measurements have to be re-

jected in these two types of atmosphere, and considered in

the tropical belt for values above 0.28× 1016 molec cm−2.

In order to broaden the exploitable latitude range, we per-

formed the same study for subtropical latitudes (consider-

ing a mix of tropical and temperate atmospheres), and we

found a 25 % confidence in the independence of the retrieval

method to the atmospheric parameters (data not shown). As

a result, in the following, IASI HCN measurements are con-

sidered in the ±35◦ latitude band with a stability threshold

of 0.28× 1016 molec cm−2, and confidence in the stability of

the method is 10 % at tropical latitudes ([±20◦]) and 25 %

at subtropical latitudes ([±35◦ :±20◦]). Oppositely to HCN,

for C2H2, the variation of HRIC2H2
due to varying TC was

found to be lower than 5 % for every C2H2 abundance (data
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Figure 5. Variation of HRIHCN caused by a TC equal to ±10 K for

the polar (solid line an circles), temperate (dashed line and squares)

and tropical (dotted line and crosses) atmospheres.

not shown). Consequently, in the following no IASI C2H2

measurements are rejected.

3 Results

The goal of this section is to describe and evaluate the C2H2

and HCN total columns as measured by IASI. We first com-

pare HCN and C2H2 total columns retrieved from IASI spec-

tra and from ground-based FTIR spectra. We then depict the

C2H2 and HCN total columns at global and regional scales.

IASI global and regional distributions are finally compared

with output from the Model for Ozone and Related Chemi-

cal Tracers, version 4 (MOZART-4) in order to evaluate the

agreement between the model and the IASI distributions.

3.1 Comparison with ground-based observations

We compare in this section HCN and C2H2 total columns

retrieved from IASI spectra and from ground-based FTIR

spectra for the years 2008–2010 for four selected ground-

based FTIR observation sites (i.e. wherever observations for

these two species were available during the period of study):

Wollongong (34◦ S; 151◦ E; 30 m above mean sea level,

a.m.s.l.), Reunion Island (21◦ S; 55◦ E; 50 m a.m.s.l.), Izaña

(28◦N; 16◦W; 2367 m a.m.s.l.) and Jungfraujoch (46◦ N;

8◦ E; 3580 m a.m.s.l.) (Fig. 6). IASI cloudy spectra were

removed from the data set using a 10 % contamination

threshold on the cloud fraction in the pixel. As exposed in

Sect. 2.2.3, errors in retrieved species abundances from IASI

spectra due to variations in atmospheric parameters are 10 %

at tropical latitudes ([±20◦]) and 25 % at subtropical lati-

tudes ([±35◦ :±20◦]) for HCN and 5 % for C2H2, and com-

parison with ground-based HCN measurements are only per-

formed for tropical and subtropical sites (Reunion Island,

Wollongong and Izaña).

Atmos. Chem. Phys., 15, 10509–10527, 2015 www.atmos-chem-phys.net/15/10509/2015/
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Figure 6. Locations of the four ground-based FTIR measurements sites (Jungfraujoch, Izaña, Reunion Island and Wollongong) and map

of the 10 regions used in this study: NAM: northern America, NCA: north-central America, SAM: South America, EUR: Europe, NAF:

northern Africa, SAF: southern Africa, BCA: boreal Central Asia, SEA: Southeast Asia, EQA: equatorial Asia, AUS: Australia.

The total error for ground-based measurements at Reunion

Island is 17 % for both species, total error for HCN ground-

based measurements at Wollongong is 15 %, total error for

HCN ground-based measurements at Izaña is 10 %, and total

error for C2H2 ground-based measurements at Jungfraujoch

is 7 %. Detailed description of ground-based FTIR data set,

retrieval method and error budget can be found in Vigouroux

et al. (2012) for Reunion Island and in Mahieu et al. (2008)

for Jungfraujoch. However, at Reunion Island, the retrieval

strategies have been slightly improved from Vigouroux et

al. (2012), mainly concerning the treatment of the inter-

fering species, but the same spectral signatures are used.

Izaña data set and error budget were obtained from the

NDACC database (ftp://ftp.cpc.ncep.noaa.gov/ndacc/station/

izana/). The Wollongong data set and error budget were cal-

culated by N. Jones from the University of Wollongong, per-

sonal communication, 2014.

Figure 7 shows the mean total column averaging kernels

for the ground-based FTIR at each of the four sites. Similar

to IASI (Fig. 3), information content from ground-based in-

struments measurements is mostly in the middle-high tropo-

sphere for both species. The main difference can be observed

for tropical C2H2: while IASI Jacobian peaks at 10 km for

C2H2 in a tropical atmosphere, ground-based FTIR averag-

ing kernel peaks at 15 km for C2H2 at Reunion Island.

Figure 8 shows the comparison between the IASI and the

ground-based measurements. IASI retrieved total columns

were averaged on a daily basis and on a 1◦× 1◦area

around the observation sites. HCN retrieved abundances be-

low 2.8× 1015 molec cm−2 have been removed from both

ground-based and space measurements to allow for compari-

son of both data sets (cf. Sect. 2.2.3). One can see that there is
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Figure 7. Total column averaging kernels of ground-based FTIR in

molec cm−2/molec cm−2 for C2H2 at Reunion Island (red stars and

line), HCN at Reunion Island (black circles and line), HCN at Wol-

longong (green dots and line), HCN at Izaña (light blue diamonds

and line) and C2H2 at Jungfraujoch (blue squares and line).

an overall agreement between the IASI and the ground-based

FTIR measurements considering the error bars. An impor-

tant result from this study is that IASI seems to capture the

seasonality in the two species in most of the cases. This is

best seen by looking at the IASI monthly mean retrieved to-

tal columns (black circles and lines in Fig. 8). The scatter of

the IASI daily mean measurements (red dots) are due to the

averaging on a 1◦× 1◦ area around the observation sites.

www.atmos-chem-phys.net/15/10509/2015/ Atmos. Chem. Phys., 15, 10509–10527, 2015
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Figure 6. Time series of HCN (left panel) and C2H2 (right panel) measurements for Reunion Island (HCN and C2H2), Wollongong (HCN
only), Izaña (HCN only), and Jungfraujoch (C2H2 only). IASI measurements are shown as daily and 1◦x 1◦means (red dots) with associated
standard deviations (light red lines), and as monthly and 1◦x 1◦means (black circles and line) with associated standard deviation (vertical
black lines). Ground-based FTIR measurements are shown as daily means with associated total error by green crosses and lines. Correlation
coefficients are given on each plot for daily means in red and for monthly means in black.

are probably due to the 2010 great Amazonian fires [Lewis
et al., 2011] influence.

At Wollongong HCN peaks also in October-November
due to the Southern Hemisphere biomass burning season
[Paton-Walsh et al., 2010]. We find maxima of around 11415

Figure 8. Time series of HCN (left panel) and C2H2 (right panel)

measurements for Reunion Island (HCN and C2H2), Wollongong

(HCN only), Izaña (HCN only), and Jungfraujoch (C2H2 only).

IASI measurements are shown as daily and 1◦× 1◦ means (red

dots) with associated standard deviations (light red lines), and as

monthly and 1◦× 1◦ means (black circles and line) with associated

standard deviation (vertical black lines). Ground-based FTIR mea-

surements are shown as daily means with associated total error by

green crosses and lines. Correlation coefficients are given on each

plot for daily means in red and for monthly means in black.

At Reunion Island HCN and C2H2 peak in October–

November and are related to the Southern Hemi-

sphere biomass burning season (Vigouroux et al.,

2012). IASI (ground-based FTIR) observed maxima

are around 12 (10)× 1015 molec cm−2 for HCN and 10

(3)× 1015 molec cm−2 for C2H2. The seasonality and

interannual variability matches very well with that of the

ground-based FTIR measurements for HCN (correlation

coefficient of 0.81 for the entire daily mean data set, and

of 0.98 for the monthly mean data set) but with the IASI

columns being biased high by 0.79× 1015 molec cm−2

(17 %). For C2H2 at Reunion Island, the seasonality and

interannual variability matches reasonably well that of

the ground-based measurements (correlation coefficient of

0.40 for the entire daily mean data set, and of 0.72 for the

monthly mean data set) but with the IASI columns being

biased high by 1.10× 1015 molec cm−2 (107 %). Such a

high bias between the two data sets could be due to the

difference between space and ground-based instruments

sensitivity (Figs. 3 and 7). One can also notice that the C2H2

and HCN peaks are higher in 2010. As South American

biomass burning plumes are known to impact trace gases

abundance above Reunion Island (Edwards et al., 2006a, b;

Duflot et al., 2010), these 2010 higher peaks are probably

influenced by the 2010 great Amazonian fires (Lewis et al.,

2011).

At Wollongong HCN peaks also in October–November

due to the Southern Hemisphere biomass burning season

(Paton-Walsh et al., 2010). We find maxima of around

11× 1015 molec cm−2 in October 2010 for both space and

ground-based instruments, which is, similar to Reunion Is-

land, very likely to be a signature of the great Amazo-

nian fires as South American biomass burning plumes are

known to impact trace gases abundance above Australia

(Edwards et al., 2006a, b). The seasonality and interan-

nual variability matches well with that of the ground-based

FTIR measurements (correlation coefficient of 0.55 for the

entire daily mean data set, and of 0.83 for the monthly

mean data set), with the IASI columns being biased low by

0.48× 1015 molec cm−2 (10 %).

At Izaña HCN peaks in May–July due to the biomass

burning activity occurring in northern America and Eu-

rope (Sancho et al., 1992). We find maxima of around

8 (6)× 1015 molec cm−2 in the IASI (ground-based FTIR)

data set. The seasonality and interannual variability matches

poorly with that of the ground-based FTIR measurements

(correlation coefficient of 0.28 for the entire daily mean data

set, and of 0.64 for the monthly mean data set), with the

IASI columns being biased high by 0.45× 1015 molec cm−2

(11 %). One can notice that HCN total columns as measured

by ground-based FTIR are below the HCN stability threshold

in boreal winter, which may result in erroneous IASI mea-

surements (because unstable) and explain this poor match

between the two data sets.

For C2H2 at the Jungfraujoch site, the agreement between

IASI and the ground-based retrieved columns is good (cor-

relation coefficient of 0.70 for the entire daily mean data

set, and of 0.85 for the monthly mean data set), with the

IASI columns being biased low by 0.15× 1015 molec cm−2

(12 %), opposite to the observations at Reunion. The larger

columns observed in late winter are caused by the increased

C2H2 lifetime in that season (caused by the seasonal change

in OH abundance) (Zander et al., 1991), and we find corre-

sponding maxima of up to 4 (3)× 1015 molec cm−2 in the

IASI (ground-based FTIR) data set.

3.2 IASI Global distributions

We focus in this section on the description of the C2H2 and

HCN distributions retrieved from IASI spectra. For practical

reasons, the figures used in this section also show simulated

distributions that will be analyzed afterwards.

The left panels of Figs. 9 and 10 provide the seasonal

global and subtropical distributions of C2H2 and HCN to-

tal columns, respectively, as measured by IASI and averaged

over the years 2008 to 2010.

Atmos. Chem. Phys., 15, 10509–10527, 2015 www.atmos-chem-phys.net/15/10509/2015/
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Figure 9. Seasonal distribution of the C2H2 total column (in molec cm−2) as measured by IASI (left panel) and simulated by MOZART-4

(right panel) averaged over the years 2008 to 2010. The IASI global distributions are given with the same horizontal resolution as MOZART-

4 (1.875◦ latitude× 2.5◦ longitude). DJF represents December–January–February, MAM: March–April–May, JJA: June–July–August, and

SON: September–October–November.

Looking at IASI measurements (Figs. 9 and 10 – left pan-

els), one can notice the following main persisting features for

both C2H2 and HCN:

– the hot spots mainly due to the biomass burning activ-

ity occurring in Africa and moving southward along the

year (Sauvage et al., 2005; van der Werf et al., 2006);

– the hot spot located in Southeast Asia being likely a

combination of biomass burning and anthropogenic ac-

tivities;

– the transatlantic transport pathway linking the African

west coast to the South American east coast and moving

southward along the year (Edwards et al., 2003, 2006a,

b; Glatthor et al., 2015).

The following seasonal features can also be observed:

– the transpacific transport pathway linking eastern Asia

to western North America, especially in March–April–

May (MAM) (Yienger et al., 2000);

www.atmos-chem-phys.net/15/10509/2015/ Atmos. Chem. Phys., 15, 10509–10527, 2015
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Figure 8. Same as Figure 9 for HCN.Figure 10. Same as Fig. 9 for HCN.

– the transport pathway from southern Africa to Australia

in June–July–August (JJA) and September–October–

November (SON) (Annegarn et al., 2002; Edwards et

al., 2006a, b);

– the transport pathway linking South America (espe-

cially Amazonia) to southern Africa and Australia dur-

ing the SON period (Edwards et al., 2006a, b; Glatthor

et al., 2015);

– the transport of the northern African plume over south-

ern Asia to as far as the eastern Pacific by the northern

subtropical jet during the MAM period (Glatthor et al.,

2015);

– the Asian monsoon anticyclone (AMA), which is the

dominant circulation feature in the Indian–Asian upper

troposphere–lower stratosphere (UTLS) region during

the Asian summer monsoon, spanning Southeast Asia to

the Middle East and flanked by the equatorial and sub-

tropical jets (Hoskins and Rodwell, 1995). The AMA is

a known region of persistent enhanced pollution in the

upper troposphere, linked to rapid vertical transport of

surface air from Asia, India, and Indonesia in deep con-

vection, and confinement by the strong anticyclonic cir-

culation (Randel et al., 2010). The enhanced abundance

of C2H2 and HCN within the AMA in JJA observed by

IASI is in accordance with previous studies (Park et al.,

2008; Randel at al., 2010; Parker et al., 2011; Glatthor

et al., 2015); however, one should keep in mind that this

enhanced abundance measured by IASI is likely due to

the combination of this pollution uplift and confinement

with the higher sensitivity of the method in the upper

troposphere (Fig. 2).

One can also notice the very good agreement between the

seasonal HCN distributions shown in our Fig. 10 and the ones

published recently in Glatthor et al. (2015, Fig. 3).

Figures 11 and 12 show the C2H2 and HCN total columns

time series, respectively, as measured by IASI (red dots) with

the associated standard deviation (light red lines) for each of

the zones defined in Fig. 6.

In northern America, Europe and boreal Central Asia

(Fig. 11 – zones NAM, EUR and BCA), C2H2 peaks in late

boreal winter due to the increased C2H2 lifetime as already

noticed over Jungfraujoch (Fig. 8). The boreal summer 2008

California wildfires event (Gyawali et al., 2009) is clearly

visible in the NAM plot, as well as the August 2009 Russian

Atmos. Chem. Phys., 15, 10509–10527, 2015 www.atmos-chem-phys.net/15/10509/2015/
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Figure 11. Evolution with time of the mean C2H2 total column (in molec cm−2) over the zones defined in Fig. 6 as measured by IASI (red

dots) with associated standard deviation (light red lines), and as simulated by MOZART-4 (black dots). Correlation coefficients (R) and

biases (Bias) between IASI and MOZART-4 are given on each plot for daily means.

wildfires in the NAM, EUR and BCA plots (Parrington et al.,

2012; R’Honi et al., 2013).

In north-central America (Fig. 12 – zone NCA), the annual

HCN peak in April–June is driven by local fire activity (van

der Werf et al., 2010).

In South America, southern Africa and Australia (Figs. 11

and 12 – zones SAM, SAF and AUS), the Southern Hemi-

sphere biomass burning season clearly drives the C2H2 and

HCN peaks in September–November each year. The signa-

ture of the great 2010 Amazonian fires (Lewis et al., 2011) is

visible on each of the these three zones, South American fire

plumes being known to impact southern Africa and Australia

(Edwards et al., 2003, 2006a, b). The February 2009 Aus-

tralian bush fires (Glatthor et al., 2013) are also noticeable

on zone AUS for both species.

In northern Africa (Figs. 11 and 12 – zone NAF), C2H2

and HCN peak in boreal winter because of the biomass

burning activity occurring in the zone, and peak also in bo-

real summer because of the European and southern Mediter-

ranean fires (van der Werf et al., 2010).

In Southeast Asia (Figs. 11 and 12 – zone SEA), the

observed C2H2 and HCN peaks in July–September and

January–March are due to local fire activity (Fortems-

Cheiney et al., 2011; Magi et al., 2012). Additionally, the

July–September peaks are also likely due to the combination

of the pollution uplift and confinement within the AMA with

the higher sensitivity of the method in the upper troposphere.

In equatorial Asia (Figs. 11 and 12 – zone EQA), local fire

activity is visible in July–October, as well as the Southeast

Asian fire activity in January–March (Fortems-Cheiney et al.,

2011; Magi et al., 2012). The high biomass burning activity

occurring in Indonesia from July to December 2009 (Yulianti

et al., 2013; Hyer et al., 2013) is also clearly noticeable.

C2H2 and HCN sharing important common sources (cf.

Introduction), the same annual and seasonal features are ob-

served for both species. However, biomass burning being the

major source for HCN (while it is biofuel and fossil fuel

combustions for C2H2), one can notice the especially high

increase in HCN abundance (up to 13× 1015 molec cm−2) in

the Southern Hemisphere during the austral biomass burning

season (September to November). These observations are in

accordance with previous studies (Lupu et al, 2009; Glatthor

et al., 2009; Wiegele et al., 2012).

3.3 Comparison with model

In order to further evaluate the HCN and C2H2 distributions

retrieved from IASI spectra, they are compared in this section

to the output of MOZART-4 for the years 2008–2010. We

first describe the simulation set-up before comparing simu-

www.atmos-chem-phys.net/15/10509/2015/ Atmos. Chem. Phys., 15, 10509–10527, 2015
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Figure 10. Same as Figure 11 for HCN.

Figure 12. Same as Fig. 11 for HCN.

lated abundances with the ground-based observations at the

four sites already studied in Sect. 3.1. We finally compare the

simulated and observed global distributions.

3.3.1 MOZART-4 simulation set-up

The model simulations presented here are performed with

the MOZART-4 global 3-D chemical transport model (Em-

mons et al., 2010a), which is driven by assimilated meteo-

rological fields from the NASA Global Modeling and As-

similation Office (GMAO) Goddard Earth Observing System

(GEOS). MOZART-4 was run with a horizontal resolution of

1.875◦ latitude× 2.5◦ longitude, with 56 levels in the verti-

cal and with its standard chemical mechanism (see Emmons

et al. (2010a) and Lamarque et al. (2012), for details). The

model simulations have been initialized by simulations start-

ing in July 2007 to avoid contamination by the spin-up in the

model results. MOZART-4 simulations of numerous species

(CO, O3 and related tracers including C2H2 and HCN) have

been previously compared to in situ and satellite observa-

tions and used to track the intercontinental transport of pol-

Table 2. Global C2H2 and HCN emission sources

(Tg(species) yr−1) during the period 2008–2010 from the data set

used in MOZART-4.

C2H2 HCN

Sources yr−1 2008 2009 2010 2008 2009 2010

Anthropogenic 3.37 3.37 3.37 1.67 1.67 1.67

Biomass burning 0.64 0.71 0.83 1.38 1.33 1.58

Total 4.01 4.07 4.20 3.05 3.00 3.25

lution (e.g. Emmons et al., 2010b; Pfister et al., 2006, 2008,

2011; Tilmes et al., 2011; Clarisse et al., 2011b; Wespes et

al., 2012; Viatte et al., 2015).

The surface anthropogenic (including fossil fuel and bio-

fuel) emissions used here were taken from the inventory

provided by D. Streets and University of Iowa and created

for the Arctic Research of the Composition of the Tropo-

sphere from Aircraft and Satellites (ARCTAS) campaign (see

http://bio.cgrer.uiowa.edu/arctas/emission.html for more in-

formation). This inventory was developed in the frame of the

POLARCAT Model Intercomparison Program (POLMIP)

and is a composite data set of regional emissions as repre-

sentative of current emissions as possible; it is built upon

the INTEX-B Asia inventory (Zhang et al., 2009) with the

US NEI (National Emission Inventory) 2002 and CAC 2005

for North America and the EMEP (European Monitoring and

Evaluation Programme) 2006 for Europe inventory to make

up NH emissions (see Emmons et al. (2015) for an evaluation

of POLMIP models). Emissions from EDGAR (Emissions

Database for Global Atmospheric Research) were used for

missing regions and species. Since only total volatile organic

compounds (VOCs) were provided with this POLMIP inven-

tory, the VOC speciation based on the RETRO emissions in-

ventory as in Lamarque et al. (2010) was used. The anthro-

pogenic emissions are constant in time with no monthly vari-

ations.

Daily biomass burning emissions were taken from the

global Fire INventory from NCAR (FINN) version 1 (Wied-

inmyer et al., 2011). The fire emissions for individual fires,

based on daily MODIS fire counts, were calculated and

then gridded to the simulation resolution (Wiedinmyer et al.,

2006, 2011). The oceanic emissions are taken from the POET

emissions data set (Granier et al., 2005) and the biogenic

emissions from MEGANv2 (Model of Emissions of Gases

and Aerosols from Nature) data set inventory (Guenther et

al., 2006).

Model emissions for HCN and C2H2 used in this study are

summarized in Table 2 and presented in Fig. 13. The major-

ity of the emissions for both C2H2 and HCN are from an-

thropogenic source (about 80 and 55 % of the global source

of C2H2 and HCN, respectively; see Table 2). Averaged over

the period 2008–2010, the highest HCN and C2H2 anthro-

pogenic surface emissions are observed over China, with el-

evated emissions over India, Europe and USA, due to in-

Atmos. Chem. Phys., 15, 10509–10527, 2015 www.atmos-chem-phys.net/15/10509/2015/
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C2H2 HCN
Sources/Year 2008 2009 2010 2008 2009 2010
Anthropogenic 3.37 3.37 3.37 1.67 1.67 1.67
Biomass Burning 0.64 0.71 0.83 1.38 1.33 1.58
Total 4.01 4.07 4.20 3.05 3.00 3.25

Table 1. Global C2H2 and HCN emission sources
(Tg(species)/year) during the period 2008-2010 from the dataset
used in MOZART-4.

et al., 2010a, for details]. The model simulations have been575

initialized by simulations starting in July 2007 to avoid con-
tamination by the spin-up in the model results. MOZART-4
simulations of numerous species (CO, O3 and related tracers
including C2H2) have been previously compared to in situ
and satellite observations and used to track the intercontinen-580

tal transport of pollution [e.g., Emmons et al., 2010b; Pfister
et al., 2006; 2008; 2011; Tilmes et al., 2011; Clarisse et al.,
2011b; Wespes et al., 2012].

The emissions used in this paper include surface
anthropogenic sources (including fossil fuel and bio-585

fuel) from D. Streets - ARCTAS inventory [see
http://www.cgrer.uiowa.edu/arctas/emission.html for more
information], developed in the frame of the POLARCAT
Model Intercomparison Program (POLMIP) as a composite
dataset of global emissions as representative of current590

emissions as possible, and fire emissions from global Fire
INventory from NCAR (FINN) version 1 [Wiedinmyer et
al., 2010]. The anthropogenic emissions, which are taken
from the 2006 inventory of Zhang et al. [2009], are constant
in time with no monthly variation. The VOC speciation is595

based on the RETRO emissions inventory, as in Lamarque
et al. [2005]. The fire emissions for individual fires, based
on daily MODIS fire counts, were calculated and then
gridded to the simulation resolution [Wiedinmyer et al.,
2006; 2010]. The oceanic emissions are taken from the600

MACCity emissions dataset and the biogenic emissions
from MEGAN-v2 dataset inventory [Guenther et al. 2006].

Model emissions for HCN and C2H2 used in this study are
summarized in Table 1 and presented in Figure 13. The ma-
jority of the emissions for both C2H2 and HCN are from an-605

thropogenic source (about 80% and 55% of the global source
of C2H2 and HCN, respectively (see Table 1)). Averaged
over the period 2008-2010, the highest HCN and C2H2 an-
thropogenic surface emissions are observed over China, with
elevated emissions over India, Europe and USA, due to in-610

tense industrialization, where values larger than 4 x 10−12

kg(C2H2) m−2 s−1 are entered in the model. The most in-
tense HCN and C2H2 emissions due to biomass burning
are observed over South East Asia, equatorial and southern
Africa, South America, Siberia and Canada.615
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Figure 11. C2H2 and HCN surface emission fluxes (kg m−2 s−1)
averaged over the period 2008-2010 from the anthropogenic and fire
emissions inventories used in MOZART-4.

3.3.2 IASI vs model global distributions

Figures 9 and 10 provide the seasonal global and subtropical
distributions of C2H2 and HCN total columns, respectively,
as measured by IASI and as simulated by MOZART-4 av-
eraged over the years 2008 to 2010. Comparison between620

Figure 13. C2H2 and HCN surface emission fluxes (kg m−2 s−1)

averaged over the period 2008–2010 from the anthropogenic and

fire emissions inventories used in MOZART-4.

tense industrialization, where values larger than 4× 10−12

kg(C2H2) m−2 s−1 are entered in the model. The most in-

tense HCN and C2H2 emissions due to biomass burning

are observed over Southeast Asia, equatorial and southern

Africa, South America, Siberia and Canada.
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Figure 14. Time series of HCN (left panel) and C2H2 (right panel) measurements and simulations for Reunion Island (HCN and C2H2),
Wollongong (HCN only), Izaña (HCN only), and Jungfraujoch (C2H2 only). MOZART-4 total columns are shown as daily and 1.875◦x
2.5◦means (blue crosses). Ground-based FTIR measurements are shown as daily means with associated total error by green circles and lines.
Correlation coefficient and bias are given on each plot for daily means.

Figure 14. Time series of HCN (left panel) and C2H2 (right

panel) measurements and simulations for Reunion Island (HCN and

C2H2), Wollongong (HCN only), Izaña (HCN only), and Jungfrau-

joch (C2H2 only). MOZART-4 total columns are shown as daily

and 1.875◦× 2.5◦ means (blue crosses). Ground-based FTIR mea-

surements are shown as daily means with associated total error by

green circles and lines. Correlation coefficient and bias are given on

each plot for daily means.

3.3.2 Model vs. ground-based FTIR observations

MOZART-4 simulations can be first evaluated by compar-

ing them to the ground-based measurements at the four sites

studied previously (Sect. 3.1). To perform this comparison,

we use the FTIR averaging kernels and a priori to degrade the

model vertical profile to the FTIR vertical resolution, in order

to obtain the model “smoothed” total column, which repre-

sents what the FTIR would measure if the model profile was

the true state (see Eq. (25) of Rodgers and Connor (2003),

and Vigouroux et al. (2012) for an example). Figure 14

shows the comparison between the simulated “smoothed” to-

tal columns and the ground-based measurements. Model out-

puts are given in a 1.875◦ latitude× 2.5◦ longitude box (cor-

responding to the horizontal resolution of the model) over the

ground-based measurement points. One can see that there is

an overall agreement between the ground-based instruments

and the model, the latter being obviously able to capture the

seasonality in the two species in most of the cases.

For HCN, the model seasonality and interannual variabil-

ity matches the ground-based FTIR measurements at Re-

union Island very well (correlation coefficient of 0.86) and

Wollongong (correlation coefficient of 0.85), and reasonably

well at Izaña (correlation coefficient of 0.59). For this last

site, one can see that the model correctly captures the abun-

www.atmos-chem-phys.net/15/10509/2015/ Atmos. Chem. Phys., 15, 10509–10527, 2015
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dance peak occurring in May–July (cf. Sect. 3.1), but sets

another peak around October. This second yearly peak for

HCN at Izaña in the model simulations could be due to an

overestimation of the southern African contribution to the

northern African loading; this hypothesis will be analyzed

in the next section. For HCN, the simulated total columns

are biased low at Reunion Island by 1.29× 1015 molec cm−2

(28 %) and at Wollongong by 1.8× 1015 molec cm−2 (38 %).

One can notice that the model does not capture the 2010

great Amazonian fires exceptional event visible on ground-

based measurements at Reunion Island and Wollongong (cf.

Sect. 3.1), which could explain the biases between the model

and ground-based data sets at these two sites. At Izaña,

the model is biased high by 0.46× 1015 molec cm−2 (13 %),

which seems to be caused by the second yearly peak simu-

lated by the model.

For C2H2, the model seasonality and interannual vari-

ability matches very well that of the ground-based FTIR

measurements at Jungfraujoch (correlation coefficient of

0.86) and reasonably well at Reunion Island (correlation

coefficient of 0.50). For this last site, one can see that

the model captures correctly the yearly peak occurring in

October–November (cf. Sect. 3.1), but struggles to simu-

late the large day-to-day variations observed by the ground-

based FTIR. This is illustrated by the very good correla-

tion coefficient between the two data sets when dealing

with monthly mean observations: 0.87 (data not shown). For

C2H2, the simulated total columns are biased low for ev-

ery sites: 0.20× 1015 molec cm−2 (21 %) at Reunion Island,

and 0.27× 1015 molec cm−2 (20 %) at Jungfraujoch. Simi-

lar to HCN, one can notice that the model does not capture

the 2010 great Amazonian fires exceptional event visible on

ground-based measurements at Reunion Island, which could

explain the bias between the model and ground-based data

sets at this site.

3.3.3 IASI vs. model global distributions

Figures 9 and 10 provide the seasonal global and subtrop-

ical distributions of C2H2 and HCN total columns, respec-

tively, as measured by IASI and as simulated by MOZART-

4 averaged over the years 2008 to 2010. For comparisons

with IASI, the hourly output from MOZART-4 was inter-

polated to the overpass time of IASI. In addition, the high-

resolution modelled layers were smoothed by applying each

of the MOZART-4 simulated profiles, the Jacobians of the

used forward model (cf. Sects. 2.2.3 and Fig. 3), to take into

account the sensitivity of both the radiative transfer model

and IASI. This has been done instead of applying the averag-

ing kernels since our retrieval scheme does not provide such

information. Note that here again HCN abundances below

2.8× 1015 molec cm−2 have been removed from both space

measurements and simulated columns to allow for compari-

son of both data sets (cf. Sect. 2.2.3).

Table 3. Correlation coefficients (R) and biases (Bias) between

IASI observations and MOZART-4 simulations for each of the

zones defined in Fig. 6.

C2H2 HCN

Zones R Bias (%) R Bias (%)

NAM 0.93 47

NCA 0.44 −1

SAM 0.54 −50 0.76 −14

EUR 0.88 115

NAF 0.66 −35 0.07 −2

SAF 0.69 −67 0.86 −28

BCA 0.82 105

SEA −0.31 −23 0.57 −4

EQA 0.45 −51 0.09 −27

AUS 0.65 −61 0.77 −26

Global 0.72 −1 0.69 −16

MOZART-4 simulations can be evaluated by looking at

Figs. 9 and 11 for C2H2, and Figs. 10 and 12 for HCN.

Figures 11 and 12 show the simulated C2H2 and HCN to-

tal columns time series, respectively, for each of the zones

defined in Fig. 6 superimposed to IASI observations. Table 3

summarizes the biases and correlation coefficients resulting

from the comparison between model and observations. Look-

ing at these tables and figures, the following conclusions can

be drawn:

– Seasonal cycles observed from satellite data are reason-

ably well reproduced by the model.

– The African, South American, Asian and Indonesian hot

spots are clearly visible in the model.

– Exceptional events that are captured by IASI (cf.

Sect. 3.2) are not simulated by MOZART-4.

– The model is more negatively biased in the Southern

Hemisphere (bias=−61 % for C2H2 and bias= -25 %

for HCN) than in the Northern Hemisphere (bias= 40 %

for C2H2 and bias=−3 % for HCN), suggesting that

anthropogenic (biomass burning) emissions are likely

overestimated (underestimated) in the model. Note that

in the MOZART-4 simulation presented here, the fire

emissions are injected at the surface, which might result

in an underestimation of concentrations at higher alti-

tudes where IASI shows an increased sensitivity.

– The model reasonably reproduces the main transport

pathways identified on IASI observations (cf. Sect. 3.2).

However, the low background concentrations in the

Southern Hemisphere as simulated by the model, espe-

cially for southern Africa and Australia (Figs. 11 and 12

– zones SAF and AUS and previous section at Reunion

Atmos. Chem. Phys., 15, 10509–10527, 2015 www.atmos-chem-phys.net/15/10509/2015/
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Island and Wollongong), is possibly due to a mix of un-

certainties introduced by the coarse grid of the model

producing too much diffusion, problems in the trans-

portation scheme for fine-scale plumes, the fire injection

set at the surface and uncertainties in the emissions. The

fact that only three representative Jacobians are used to

perform the global comparison might also play a role.

In Table 3, for C2H2, the correlation coefficients are good

(≥ 0.6) to very good (≥ 0.9) except for the zones SAM

(South America), SEA (Southeast Asia) and EQA (equato-

rial Asia). For HCN, the correlation coefficients are good

(≥ 0.6) except for the zones NCA (north-central America),

NAF (northern Africa), SEA and EQA.

For South America (zone SAM), correlation coefficient is

not as good for C2H2 (R = 0.54) due to a backward shift

of the species abundance peaks in years 2008 and 2009: in

the model, this increase occurs from July to October, while

observations (and previous studies, e.g. van der Werf et al.,

2010) show an increase from August to December. This

backward shift is also visible for HCN (Fig. 12), but to a

lesser extent.

For Southeast Asia and equatorial Asia (zones SEA and

EQA), the low correlation coefficients (cf. Table 3) can be

attributed to the difficulty of locating precisely with the

model the intercontinental convergence zone (ITCZ) which

drives the long-range transport of C2H2 and HCN-loaded

plumes into the zone. Moreover, for Southeast Asia, the very

low correlation coefficient for C2H2 (−0.31) may be caused

by (i) the model setting the high abundance peaks in DJF

and MAM (Fig. 9, especially visible over China coast, and

Fig. 11), which may be due to an overestimation of the Asian

anthropogenic emissions, and (ii) IASI observations exhibit-

ing July–September peaks, which are likely due to the com-

bination of the pollution uplift and confinement within the

AMA with the higher sensitivity of the method in the upper

troposphere. Additionally, for equatorial Asia, the too low

fire emissions considered in the model for Indonesia from

July to December 2009 may also be a cause for these low

correlation coefficients.

For HCN in northern Africa (zone NAF), correlation co-

efficient is very low (R = 0.07) because the model sets the

abundance peaks around August while observations show

peaks occurring around December, which is in accordance

with previous studies (van der Werf et al., 2010). This inade-

quate timing for HCN in the model simulations could be due

to an overestimation of the southern African contribution to

the northern African loading and is visible on Fig. 10 (JJA).

4 Conclusions

We have presented a fast method to retrieve HCN and

C2H2 total columns from IASI spectra. The sensitivity

of this method to the two species is mostly in the mid-

upper troposphere. With this method, C2H2 total columns

can be retrieved globally with 5 % precision, while HCN

abundances can be retrieved for abundances greater than

0.28× 1016 molec cm−2 with 10 % precision in the±20◦ lat-

itudinal band and with 25 % precision in the [±35◦ :±20◦]

latitudinal band.

Total columns have been retrieved globally for a 3-year pe-

riod and compared to routine FTIR measurements available

at Reunion Island (HCN and C2H2), Wollongong (HCN),

Jungfraujoch (C2H2), and Izaña (HCN). The comparison be-

tween IASI and FTIR retrieved total columns demonstrates

the capabilities of IASI to capture the seasonality in HCN

and C2H2 in most cases.

Global seasonal distributions, as well as regional time

series of the total columns, have been shown for the two

species. IASI is able to capture persisting, seasonal and ex-

ceptional features for both species, and the observed patterns

are in a general good agreement with previous spaceborne

studies (ACE-FTIR and MIPAS).

The comparison between MOZART-4 simulations and the

ground-based FTIR measurements, together with the com-

parison between the IASI observations and MOZART-4 sim-

ulations leads to the following conclusions: (i) the model is

able to capture most of the hot spots and seasonal cycles, but

not the exceptional events; (ii) the anthropogenic (biomass

burning) emissions used in the model seem to be overesti-

mated (underestimated) for both species; (iii) discrepancies

between simulations and observations are most probably due

to the coarse grid of the model producing too much diffu-

sion and problems in the transportation scheme for fine-scale

plumes, as well as to the fire injection set at the surface.
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