141 research outputs found
A Strategic Routing Framework and Algorithms for Computing Alternative Paths
Traditional navigation services find the fastest route for a single driver. Though always using the fastest route seems desirable for every individual, selfish behavior can have undesirable effects such as higher energy consumption and avoidable congestion, even leading to higher overall and individual travel times. In contrast, strategic routing aims at optimizing the traffic for all agents regarding a global optimization goal. We introduce a framework to formalize real-world strategic routing scenarios as algorithmic problems and study one of them, which we call Single Alternative Path (SAP), in detail. There, we are given an original route between a single origin-destination pair. The goal is to suggest an alternative route to all agents that optimizes the overall travel time under the assumption that the agents distribute among both routes according to a psychological model, for which we introduce the concept of Pareto-conformity. We show that the SAP problem is NP-complete, even for such models. Nonetheless, assuming Pareto-conformity, we give multiple algorithms for different variants of SAP, using multi-criteria shortest path algorithms as subroutines. Moreover, we prove that several natural models are in fact Pareto-conform. The implementation and evaluation of our algorithms serve as a proof of concept, showing that SAP can be solved in reasonable time even though the algorithms have exponential running time in the worst case
Surgical training and post-surgery evaluation using rapid prototyped biomodels
The biomedical use of rapid prototyping technologies (RP) had great developments in the last years, especially as supportive tools for tissue growth, direct or supportive technology for implant fabrication or as tool for personalized biomodels production applied to studies, this research will focus on this last type of usage in continuation of previous work developed with RP as an aid of surgery procedures. Biomodels can play an important role as a complementary diagnostic method to medical staff (Queijo et al., 2010). The usage of RP technologies for biomodels production, in Lytic Spondylolisthesis surgical training and as a tool for post-surgery evaluation, is presented in this paper
A strategic routing framework and algorithms for computing alternative paths
Traditional navigation services find the fastest route for a single driver. Though always using the fastest route seems desirable for every individual, selfish behavior can have undesirable effects such as higher energy consumption and avoidable congestion, even leading to higher overall and individual travel times. In contrast, strategic routing aims at optimizing the traffic for all agents regarding a global optimization goal. We introduce a framework to formalize real-world strategic routing scenarios as algorithmic problems and study one of them, which we call Single Alternative Path (SAP), in detail. There, we are given an original route between a single origin-destination pair. The goal is to suggest an alternative route to all agents that optimizes the overall travel time under the assumption that the agents distribute among both routes according to a psychological model, for which we introduce the concept of Pareto-conformity. We show that the SAP problem is NP-complete, even for such models. Nonetheless, assuming Pareto-conformity, we give multiple algorithms for different variants of SAP, using multi-criteria shortest path algorithms as subroutines. Moreover, we prove that several natural models are in fact Pareto-conform. The implementation and evaluation of our algorithms serve as a proof of concept, showing that SAP can be solved in reasonable time even though the algorithms have exponential running time in the worst case
Parallel Postulates and Continuity Axioms: A Mechanized Study in Intuitionistic Logic Using Coq
Сверхлегкие генераторные модули для КВЧ-терапии
Разработаны миниатюрные генераторные модули для КВЧ-терапии, лег-ко фиксируемые в любом месте тела пациента. Могут быть использованы не только в медицине
Three-year performance of the IceAct telescopes at the IceCube Neutrino Observatory
IceAct is an array of compact Imaging Air Cherenkov Telescopes at the ice surface as part of the IceCube Neutrino Observatory. The telescopes, featuring a camera of 61 silicon photomultipliers and fresnel-lens-based optics, are optimized to be operated in harsh environmental conditions, such as at the South Pole. Since 2019, the first two telescopes have been operating in a stereoscopic configuration in the center of IceCube\u27s surface detector IceTop. With an energy threshold of about 10 TeV and a wide field-of-view, the IceAct telescopes show promising capabilities of improving current cosmic-ray composition studies: measuring the Cherenkov light emissions in the atmosphere adds new information about the shower development not accessible with the current detectors. First simulations indicate that the added information of a single telescope leads, e.g., to an improved discrimination between flux contributions from different primary particle species in the sensitive energy range.
We review the performance and detector operations of the telescopes during the past 3 years (2020-2022) and give an outlook on the future of IceAct
Highlights from the IceCube Neutrino Observatory
As IceCube surpasses a decade of operation in the full detector configuration, results that drive forward the fields of neutrino astronomy, cosmic ray physics, multi-messenger astronomy, particle physics, and beyond continue to emerge at an accelerated pace. IceCube data is dominated by background events, and thus teasing out the signal is the common challenge to most analyses. Statistical accumulation of data, along with better understanding of the background fluxes, the detector, and continued development of our analysis tools have produced many profound results that were presented at ICRC2023. Highlights covered here include the first neutrino observation of the Galactic Plane, the first observation of a steady emission neutrino point source NGC1068, new characterizations of the cosmic ray flux and its secondary particles, and a possible new era in measuring the energy spectrum of the diffuse astrophysical flux. IceCube is poised to make more discoveries and drive fields forward in the near future with many novel analyses coming online
Search for the rare interactions of neutrinos from distant point sources with the IceCube Neutrino Telescope
The recent discovery and evidence of neutrino signals from distant sources, TXS 0506+056 and NGC 1068 respectively, provide opportunities to search for rare interactions of neutrinos that they might encounter on their paths. One potential scenario of interest is the interaction between neutrinos and dark matter, which is invisible and expected to be abundantly spread over the Universe. Various astrophysical observations have implied the existence of dark matter. When high-energy neutrinos from extragalactic sources interact with dark matter during their propagation, their spectra might show suppressions at specific energy ranges, where such interactions occur. These attenuation signatures from the interaction might be measurable on Earth with large neutrino telescopes such as the IceCube Neutrino Observatory. This analysis is focused on the search for rare interactions of high-energy neutrinos from the IceCube-identified astrophysical neutrino sources with dark matter in sub-GeV masses and several benchmark mediator cases using the upgoing track-like events. In this poster, sensitivity studies about the interaction of neutrinos and dark matter are presented
A new simulation framework for IceCube Upgrade calibration using IceCube Upgrade Camera system
Currently, an upgrade consisting of seven densely instrumented strings in the center of the volume of the IceCube detector with new digital optical modules (DOMs) is being built. On each string, DOMs will be regularly spaced with a vertical separation of 3 m between depths of 2160 m and 2430 m below the surface of the ice, which is a denser configuration compared to the existing DOMs of IceCube detector.
For a precise calibration of the IceCube Upgrade it is important to understand the properties of the ice, both inside and surrounding the deployment holes.LEDs and Camera systems, which are developed and produced at Sungkyunkwan university, are installed in every single DOM to measure these properties. For these calibration measurements, a new simulation framework, which produces expected images from various geometric and optical variables has been developed and images produced from the simulation are expected to be used to develop an analysis framework for the IceCube Upgrade camera calibration system and for the design of the IceCube Gen2 camera system
- …
