71 research outputs found

    Atypical MEG inter-subject correlation during listening to continuous natural speech in dyslexia

    Get PDF
    Listening to speech elicits brain activity time-locked to the speech sounds. This so-called neural entrainment to speech was found to be atypical in dyslexia, a reading impairment associated with neural speech processing deficits. We hypothesized that the brain responses of dyslexic vs. normal readers to real-life speech would be different, and thus the strength of inter-subject correlation (ISC) would differ from that of typical readers and be reflected in reading-related measures. We recorded magnetoencephalograms (MEG) of 23 dyslexic and 21 typically-reading adults during listening to ∼10 min of natural Finnish speech consisting of excerpts from radio news, a podcast, a self-recorded audiobook chapter and small talk. The amplitude envelopes of band-pass-filtered MEG source signals were correlated between subjects in a cortically-constrained source space in six frequency bands. The resulting ISCs of dyslexic and typical readers were compared with a permutation-based t-test. Neuropsychological measures of phonological processing, technical reading, and working memory were correlated with the ISCs utilizing the Mantel test. During listening to speech, ISCs were mainly reduced in dyslexic compared to typical readers in delta (0.5–4 Hz) and high gamma (55–90 Hz) frequency bands. In the theta (4−8 Hz), beta (12–25 Hz), and low gamma (25−45 Hz) bands, dyslexics had enhanced ISC to speech compared to controls. Furthermore, we found that ISCs across both groups were associated with phonological processing, technical reading, and working memory. The atypical ISC to natural speech in dyslexics supports the temporal sampling deficit theory of dyslexia. It also suggests over-synchronization to phoneme-rate information in speech, which could indicate more effort-demanding sampling of phonemes from speech in dyslexia. These irregularities in parsing speech are likely some of the complex neural factors contributing to dyslexia. The associations between neural coupling and reading-related skills further support this notion.Peer reviewe

    CMC is more than a measure of corticospinal tract integrity in acute stroke patients

    Get PDF
    In healthy subjects, motor cortex activity and electromyographic (EMG) signals from contracting contralateral muscle show coherence in the beta (15-30 Hz) range. Corticomuscular coherence (CMC) is considered a sign of functional coupling between muscle and brain. Based on prior studies, CMC is altered in stroke, but functional significance of this finding has remained unclear. Here, we examined CMC in acute stroke patients and correlated the results with clinical outcome measures and corticospinal tract (CST) integrity estimated with diffusion tensor imaging (DTI). During isometric contraction of the extensor carpi radialis muscle, EMG and magneto encephalographic oscillatory signals were recorded from 29 patients with paresis of the upper extremity due to ischemic stroke and 22 control subjects. CMC amplitudes and peak frequencies at 13-30 Hz were compared between the two groups. In the patients, the peak frequency in both the affected and the unaffected hemisphere was significantly (p < 0.01) lower and the strength of CMC was significantly (p < 0.05) weaker in the affected hemisphere compared to the control subjects. The strength of CMC in the patients correlated with the level of tactile sensitivity and clinical test results of hand function. In contrast, no correlation between measures of CST integrity and CMC was found. The results confirm the earlier findings that CMC is altered in acute stroke and demonstrate that CMC is bidirectional and not solely a measure of integrity of the efferent corticospinal tract.Peer reviewe

    A gene to organism approach--assessing the impact of environmental pollution in eelpout (Zoarces viviparus) females and larvae

    Get PDF
    A broad biomarker approach was applied to study the effects of marine pollution along the Swedish west coast using the teleost eelpout (Zoarces viviparus) as the sentinel species. Measurements were performed on different biological levels, from the molecular to the organismal, including measurements of messenger RNA (mRNA), proteins, cellular and tissue changes, and reproductive success. Results revealed that eelpout captured in Stenungsund had significantly higher hepatic ethoxyresorufin O-deethylase activity, high levels of both cytochrome P4501A and diablo homolog mRNA, and high prevalence of dead larvae and nuclear damage in erythrocytes. Eelpout collected in Göteborg harbor displayed extensive macrovesicular steatosis, whereby the majority of hepatocytes were affected throughout the liver, which could indicate an effect on lipid metabolism. Results also indicate that eelpouts collected at polluted sites might have an affected immune system, with lower mRNA expression of genes involved in the innate immune system and a higher number of lymphocytes. Biomarker assessment also was performed on livers dissected from unborn eelpout larvae collected from the ovary of the females. No significant differences were noted, which might indicate that the larvae to some extent are protected from effects of environmental pollutants. In conclusion, usage of the selected set of biological markers, covering responses from gene to organism, has demonstrated site-specific biomarker patterns that provided a broad and comprehensive picture of the impact of environmental stressors

    Update of the Minimum Information About BIobank Data Sharing (MIABIS) Core Terminology to the 3<sup>rd</sup> Version

    Get PDF
    Introduction: The Minimum Information About BIobank Data Sharing (MIABIS) is a biobank-specific terminology enabling the sharing of biobank-related data for different purposes across a wide range of database implementations. After 4 years in use and with the first version of the individual-level MIABIS component Sample, Sample donor, and Event, it was necessary to revise the terminology, especially to include biobanks that work more in the data domain than with samples.Materials &amp; Methods: Nine use-cases representing different types of biobanks, studies, and networks participated in the development work. They represent types of data, specific sample types, or levels of organization that were not included earlier in MIABIS. To support our revision of the Biobank entity, we conducted a survey of European biobanks to chart the services they provide. An important stakeholder group for biobanks include researchers as the main users of biobanks. To be able to render MIABIS more researcher-friendly, we collected different sample/data requests to analyze the terminology adjustment needs in detail. During the update process, the Core terminology was iteratively reviewed by a large group of experts until a consensus was reached.Results: With this update, MIABIS was adjusted to encompass data-driven biobanks and to include data collections, while also describing the services and capabilities biobanks offer to their users, besides the retrospective samples. The terminology was also extended to accommodate sample and data collections of nonhuman origin. Additionally, a set of organizational attributes was compiled to describe networks.Discussion: The usability of MIABIS Core v3 was increased by extending it to cover more topics of the biobanking domain. Additionally, the focus was on a more general terminology and harmonization of attributes with the individual-level entities Sample, Sample donor, and Event to keep the overall terminology minimal. With this work, the internal semantics of the MIABIS terminology was improved

    Fast Detection of Unexpected Sound Intensity Decrements as Revealed by Human Evoked Potentials

    Get PDF
    The detection of deviant sounds is a crucial function of the auditory system and is reflected by the automatically elicited mismatch negativity (MMN), an auditory evoked potential at 100 to 250 ms from stimulus onset. It has recently been shown that rarely occurring frequency and location deviants in an oddball paradigm trigger a more negative response than standard sounds at very early latencies in the middle latency response of the human auditory evoked potential. This fast and early ability of the auditory system is corroborated by the finding of neurons in the animal auditory cortex and subcortical structures, which restore their adapted responsiveness to standard sounds, when a rare change in a sound feature occurs. In this study, we investigated whether the detection of intensity deviants is also reflected at shorter latencies than those of the MMN. Auditory evoked potentials in response to click sounds were analyzed regarding the auditory brain stem response, the middle latency response (MLR) and the MMN. Rare stimuli with a lower intensity level than standard stimuli elicited (in addition to an MMN) a more negative potential in the MLR at the transition from the Na to the Pa component at circa 24 ms from stimulus onset. This finding, together with the studies about frequency and location changes, suggests that the early automatic detection of deviant sounds in an oddball paradigm is a general property of the auditory system

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    X-Ray Nanotomography of Individual Pulp Fibre Bonds Reveals the Effect of Wall Thickness on Contact Area

    No full text
    Fibre bonds play an essential role in various properties of paper. Much research has focused on their strength, but the determination of the actual contact area also provides a challenge. Many of the research methods rely on optical tools, which are restricted by the wavelength of light that is utilised. Novel X-ray computed tomography devices utilise X-rays in studying the inner structure of materials, and surpass the optical methods in terms of resolution, allowing detection of even smaller details and variations in distance between the fbres in the bond intersection area. X-ray nanotomography was used to image 26 individual cellulose fbre bonds made of springwood and summerwood fbres of refned bleached softwood kraft pulp. Various dimensional properties of the bonds were measured, most importantly the relative contact area (apparent contact area/intersection area), whose values showed wide variation from 6.4 to 85% with an average of 57.7%. Although the summerwood bonds had a somewhat smaller intersection and contact area than springwood bonds, there were no signifcant diferences in the relative contact area between the bond types. This suggests that the efect of relative and absolute contact area on the strength diferences between bond types seems to be minor.peerReviewe
    corecore