82 research outputs found

    A fast and reliable method for the delineation of tree crown outlines for the computation of crown openness values and other crown parameters

    Get PDF
    Numerous crown parameters (e.g., leaf area index, diameter, height, volume) can be obtained via the analysis of tree crown photographs. In all cases, parameter values are functions of the position of the crown outline. However, no standardized method to delineate crowns exists. To explore the effect of different outlines on tree crown descriptors, in this case crown openness (CO), and facilitate the adoption of a standard method free of user bias, we developed the program Crown Delineator that automatically delineates any outline around tree crowns following predetermined sensibility settings. We used different outlines to analyze tree CO in contrasting settings: using saplings from four species in young boreal mixedwood forests and medium-sized hybrid poplar trees from a low-density plantation. In both cases, the estimated CO increases when calculated from a looser outline, which had a strong influence on understory available light simulations using a forest simulator. These results demonstrate that the method used to trace crown outlines is an important step in the determination of CO values. We provide a much-needed computer-assisted solution to help standardize this procedure, which can also be used in many other situations in which the delineation of tree crowns is needed (e.g., competition and crown shyness)

    Fine roots distribution, light conditions and yield in a tree-based intercrop system

    Get PDF
    Paper presented at the 13th North American Agroforesty Conference, which was held June 19-21, 2013 in Charlottetown, Prince Edward Island, Canada.In Poppy, L., Kort, J., Schroeder, B., Pollock, T., and Soolanayakanahally, R., eds. Agroforestry: Innovations in Agriculture. Proceedings, 13th North American Agroforestry Conference, Charlottetown, Prince Edward Island, Canada, June 19-21, 2013."In tree-based intercrop systems (TBI), trees are planted in widely spaced rows to allow agricultural activities to continue. These agroforestry systems are new in Qu_bec but well known in Europe, USA and China (Baldy et al., 1993; Rivest and Olivier, 2007). The integration of trees into an agroforestry system has the potential to enhance soil fertility, reduce erosion, improve water quality, increase biodiversity and aesthetics, and sequester carbon (Jose, 2009; Montagnini and Nair, 2004). However, the presence of trees also results in aboveground and belowground interspecific interactions with crop, which can include competition, facilitation or complementarity (Jose et al., 2004; Rivest and Olivier, 2007; Van Noordwijk et al., 1996). In theory, TBI systems can be more productive than the respective monocultures if trees have the capacity to take resources like water and nutrients in deeper soil layers than those used by crops (Cannell et al., 1996)."--Introduction.L�a Bouttier (1), Alain Paquette (2), Christian Messier (2) and Alain Cogliastro (1) ; 1. Institut de Recherche en Biologie V�g�tale, 4101 Sherbrooke Est, Montr�al, QC H1X 2B2, Canada. 2. Universit� du Qu�bec a Montr�al, 270 Rue Saint Antoine Ouest, Montreal, QC H2Y 0A3, Canada.Includes bibliographical references

    Pathways for cross-boundary effects of biodiversity on ecosystem functioning

    Get PDF
    The biodiversity-ecosystem functioning concept asserts that processes in ecosystems are markedly influenced by species richness and other facets of biodiversity. However, biodiversity-ecosystem functioning studies have been largely restricted to single ecosystems, ignoring the importance of functional links - such as the exchange of matter, energy, and organisms - between coupled ecosystems. Here we present a basic concept and outline three pathways of cross boundary biodiversity effects on ecosystem processes and propose an agenda to assess such effects, focusing on terrestrial-aquatic linkages to illustrate the case. This cross-boundary perspective of biodiversity-ecosystem functioning relationships presents a promising frontier for biodiversity and ecosystem science with repercussions for the conservation, restoration, and management of biodiversity and ecosystems from local to landscape scales.Peer reviewe

    Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why

    Get PDF
    1. Plant functional traits, in particular specific leaf area (SLA), wood density and seed mass, are often good predictors of individual tree growth rates within communities. Individuals and species with high SLA, low wood density and small seeds tend to have faster growth rates. 2. If community-level relationships between traits and growth have general predictive value, then similar relationships should also be observed in analyses that integrate across taxa, biogeographic regions and environments. Such global consistency would imply that traits could serve as valuable proxies for the complex suite of factors that determine growth rate, and, therefore, could underpin a new generation of robust dynamic vegetation models. Alternatively, growth rates may depend more strongly on the local environment or growth–trait relationships may vary along environmental gradients. 3. We tested these alternative hypotheses using data on 27 352 juvenile trees, representing 278 species from 27 sites on all forested continents, and extensive functional trait data, 38% of which were obtained at the same sites at which growth was assessed. Data on potential evapotranspiration (PET), which summarizes the joint ecological effects of temperature and precipitation, were obtained from a global data base. 4. We estimated size-standardized relative height growth rates (SGR) for all species, then related them to functional traits and PET using mixed-effect models for the fastest growing species and for all species together. 5. Both the mean and 95th percentile SGR were more strongly associated with functional traits than with PET. PET was unrelated to SGR at the global scale. SGR increased with increasing SLA and decreased with increasing wood density and seed mass, but these traits explained only 3.1% of the variation in SGR. SGR–trait relationships were consistently weak across families and biogeographic zones, and over a range of tree statures. Thus, the most widely studied functional traits in plant ecology were poor predictors of tree growth over large scales. 6. Synthesis. We conclude that these functional traits alone may be unsuitable for predicting growth of trees over broad scales. Determining the functional traits that predict vital rates under specific environmental conditions may generate more insight than a monolithic global relationship can offer

    Insights on the Neuromagnetic Representation of Temporal Asymmetry in Human Auditory Cortex.

    Get PDF
    Communication sounds are typically asymmetric in time and human listeners are highly sensitive to this short-term temporal asymmetry. Nevertheless, causal neurophysiological correlates of auditory perceptual asymmetry remain largely elusive to our current analyses and models. Auditory modelling and animal electrophysiological recordings suggest that perceptual asymmetry results from the presence of multiple time scales of temporal integration, central to the auditory periphery. To test this hypothesis we recorded auditory evoked fields (AEF) elicited by asymmetric sounds in humans. We found a strong correlation between perceived tonal salience of ramped and damped sinusoids and the AEFs, as quantified by the amplitude of the N100m dynamics. The N100m amplitude increased with stimulus half-life time, showing a maximum difference between the ramped and damped stimulus for a modulation half-life time of 4 ms which is greatly reduced at 0.5 ms and 32 ms. This behaviour of the N100m closely parallels psychophysical data in a manner that: i) longer half-life times are associated with a stronger tonal percept, and ii) perceptual differences between damped and ramped are maximal at 4 ms half-life time. Interestingly, differences in evoked fields were significantly stronger in the right hemisphere, indicating some degree of hemispheric specialisation. Furthermore, the N100m magnitude was successfully explained by a pitch perception model using multiple scales of temporal integration of auditory nerve activity patterns. This striking correlation between AEFs, perception, and model predictions suggests that the physiological mechanisms involved in the processing of pitch evoked by temporal asymmetric sounds are reflected in the N100m

    For the sake of resilience and multifunctionality, let's diversify planted forests!

    Get PDF
    As of 2020, the world has an estimated 290 million ha of planted forests and this number is continuously increasing. Of these, 131 million ha are monospecific planted forests under intensive management. Although monospecific planted forests are important in providing timber, they harbor less biodiversity and are potentially more susceptible to disturbances than natural or diverse planted forests. Here, we point out the increasing scientific evidence for increased resilience and ecosystem service provision of functionally and species diverse planted forests (hereafter referred to as diverse planted forests) compared to monospecific ones. Furthermore, we propose five concrete steps to foster the adoption of diverse planted forests: (1) improve awareness of benefits and practical options of diverse planted forests among land-owners, managers, and investors; (2) incentivize tree species diversity in public funding of afforestation and programs to diversify current maladapted planted forests of low diversity; (3) develop new wood-based products that can be derived from many different tree species not yet in use; (4) invest in research to assess landscape benefits of diverse planted forests for functional connectivity and resilience to global-change threats; and (5) improve the evidence base on diverse planted forests, in particular in currently under-represented regions, where new options could be tested

    The number of tree species on Earth.

    Get PDF
    One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness

    The number of tree species on Earth

    Get PDF
    One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global groundsourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are 73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness

    Author Correction: Native diversity buffers against severity of non-native tree invasions.

    Get PDF
    corecore