326 research outputs found

    Multirésistance des entérobactéries aux antibiotiques et modulation de l’influx et de l’efflux membranaires chez Escherichia coli ST131

    Get PDF
    The spread of multidrug-resistant (MDR) Enterobacteriaceae is a major public health threat worldwide. Resistant to at least three classes of antibiotics, MDR Enterobacteriaceae cause infections for which first-line treatments are inefficient. The first part of this work focused on the molecular epidemiology of MDR Enterobacteriaceae strains isolated in infections and colonizations of patients hospitalized in Languedoc-Roussillon, in France and in Algeria, a country where few data are currently available. We showed in our region and nationally, that resistance to carbapenems was mainly due to changes in membrane permeability (87.4% of resistant Enterobacteriaceae, nationally).In the second part of this work, we studied the modulation of membrane efflux and permeability in the quintessential example of an international MDR high-risk clone, Escherichia coli ST131. We showed that this global clone had a remarkable adaptability to antibiotic pressure. This adaptability had a significant impact on the virulence and the fitness of E. coli. The biofilm formation and virulence capacities in Caenorhabditis elegans model were increased in strains overexpressing an efflux system. Conversely, the strains with altered porins expression had a low potential virulence, associated with a significant reduction in biofilm formation and swimming mobility.La diffusion des entérobactéries multirésistantes aux antibiotiques (MDR) à l’échelle mondiale constitue une menace de santé publique majeure. Résistantes à au moins trois classes d’antibiotiques, les entérobactéries MDR entrainent des infections échappant aux traitements de première intention. La première partie de ce travail s’intéresse à l’épidémiologie moléculaire des souches d’entérobactéries MDR isolées dans les infections et les colonisations des patients hospitalisés en Languedoc-Roussillon, en France, et dans un pays où cette épidémiologie est encore peu connue, l’Algérie. Nous avons montré, dans notre région et au niveau national, que la résistance aux carbapénèmes était essentiellement liée à des modifications de la perméabilité membranaire (87,4% des entérobactéries résistantes, au niveau national). Dans la deuxième partie de ce travail, nous avons étudié les modulations de la perméabilité membranaire et de l’efflux chez Escherichia coli ST131, l’exemple-type d’un clone MDR. Nous avons montré que ce clone mondial présentait une remarquable adaptabilité à la pression antibiotique. Cette adaptabilité avait un impact significatif sur la virulence et le fitness de E. coli. Les capacités de formation de biofilm et la virulence chez Caenorhabditis elegans étaient augmentées chez les souches de phénotypes « efflux ». Inversement, les souches de phénotypes « imperméabilité » présentaient un faible potentiel de virulence, associé à une diminution significative de la formation de biofilm et de la mobilité par swimming

    Last resort beta-lactam antibiotics for treatment of New-Delhi Metallo-Beta-Lactamase producing Enterobacterales and other Difficult-to-Treat Resistance in Gram-negative bacteria: A real-life study

    Get PDF
    IntroductionNovel last resort beta-lactam antibiotics are now available for management of infections due to New-Delhi Metallo-Beta-Lactamase (NDM) producing Enterobacterales and non-fermenters with Difficult-to-Treat Resistance. However, data regarding the use of imipenem-cilastatin-relebactam (IMI-REL), cefiderocol (CFD) and ceftazidime-avibactam plus aztreonam (CAZ-AVI-ATM) are scarce in real-life settings. This study aimed to describe the use of last resort beta-lactam antibiotics, the microbiology and the outcome, in patients hospitalized in a tertiary hospital.MethodsWe conducted a monocentric observational cohort study from 2020/01/01, to 2022/08/31. We screened all patients admitted to Nimes University Hospital who have received ≥ 1 dose of last resort beta-lactam antibiotics during the study period, using the Pharmacy database. We included patients treated with IMI-REL, CFD and CAZ-AVI-ATM. The primary endpoint was the infection-free survival rate. We also calculated rates of microbiological and clinical cure, recurrent infection, death and adverse events.ResultsTwenty-seven patients were included in the study and 30 treatment courses were analyzed: CFD (N=24; 80%), CAZ-AVI-ATM (N=3; 10%) and IMI-REL (N=3; 10%). Antibiotics were used in 21 males (70%) and 9 females (30%) with a median age at 65-year-old [50-73.5] and a median Charlson index at 1 [0-2]. Almost all the patients had ≥ 1 risk factor for carbapenem resistant bacteria, a half of them was hospitalized for severe COVID-19, and most of antibiotic courses (N=26; 87%) were associated with ICU admission. In the study population, the probability of infection-free survival at day-90 after last resort beta-lactam therapy initiation was 48.4% CI95% [33.2-70.5]. Clinical failure rate was at 30%, microbiological failure rate at 33% and mortality rate at 23%. Adverse events were documented in 5 antibiotic courses (17%). In details, P. aeruginosa were mainly treated with CFD and IMI-REL, S. maltophilia with CFD and CAZ-AVI-ATM, A. baumannii with CFD, and NDM producing-K. pneumoniae with CAZ-AVI-ATM and CFD. After a treatment course with CFD, CAZ-AVI-ATM and IMI-REL, the probability of infection-free survival was 48% CI95% [10.4-73.5], 33.3% CI95% [6.7-100], 66.7% CI95% [30-100], respectively.Discussion/conclusionUse of last resort beta-lactam antimicrobials in real-life settings was a safe and efficient therapeutic option for severe infections related to Gram-negative bacteria with Difficult-to-Treat Resistance

    Detection of Tumor Cell-Specific mRNA in the Peripheral Blood of Patients with Breast Cancer-Evaluation of Several Markers with Real-Time Reverse Transcription-PCR

    Get PDF
    It is widely known that cells from epithelial tumors, e. g., breast cancer, detach from their primary tissue and enter blood circulation. We show that the presence of circulating tumor cells (CTCs) in samples of patients with primary and metastatic breast cancer can be detected with an array of selected tumor-marker-genes by reverse transcription real-time PCR. The focus of the presented work is on detecting differences in gene expression between healthy individuals and adjuvant and metastatic breast cancer patients, not an accurate quantification of these differences. Therefore, total RNA was isolated from blood samples of healthy donors and patients with primary or metastatic breast cancer after enrichment of mononuclear cells by density gradient centrifugation. After reverse transcription real-time PCR was carried out with a set of marker genes (BCSP, CK8, Her2, MGL, CK18, CK19). B2M and GAPDH were used as reference genes. Blood samples from patients with metastatic disease revealed increased cytokine gene levels in comparison to normal blood samples. Detection of a single gene was not sufficient to detect CTCs by reverse transcription real-time PCR. Markers used here were selected based on a recent study detecting cancer cells on different protein levels. The combination of such a marker array leads to higher and more specific discovery rates, predominantly in metastatic patients. Identification of CTCs by PCR methods may lead to better diagnosis and prognosis and could help to choose an adequate therapy

    Clinical relevance and biology of circulating tumor cells

    Get PDF
    Most breast cancer patients die due to metastases, and the early onset of this multistep process is usually missed by current tumor staging modalities. Therefore, ultrasensitive techniques have been developed to enable the enrichment, detection, isolation and characterization of disseminated tumor cells in bone marrow and circulating tumor cells in the peripheral blood of cancer patients. There is increasing evidence that the presence of these cells is associated with an unfavorable prognosis related to metastatic progression in the bone and other organs. This review focuses on investigations regarding the biology and clinical relevance of circulating tumor cells in breast cancer

    miRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis–associated genes

    Get PDF
    miRNAs are master regulators of gene expression that play key roles in cancer metastasis. During bone metastasis, metastatic tumor cells must rewire their biology and express genes that are normally expressed by bone cells (a process called osteomimicry), which endow tumor cells with full competence for outgrowth in the bone marrow. Here, we establish miR-30 family members miR-30a, miR-30b, miR-30c, miR-30d, and miR-30e as suppressors of breast cancer bone metastasis that regulate multiple pathways, including osteomimicry. Low expression of miR-30 in primary tumors from patients with breast cancer were associated with poor relapse-free survival. In addition, estrogen receptor (ER)-negative/progesterone receptor (PR)-negative breast cancer cells expressed lower miR-30 levels than their ER/PR-positive counterparts. Overexpression of miR-30 in ER/PR-negative breast cancer cells resulted in the reduction of bone metastasis burden in vivo. In vitro, miR-30 did not affect tumor cell proliferation, but did inhibit tumor cell invasion. Furthermore, overexpression of miR-30 restored bone homeostasis by reversing the effects of tumor cell–conditioned medium on osteoclastogenesis and osteoblastogenesis. A number of genes associated with osteoclastogenesis stimulation (IL8, IL11), osteoblastogenesis inhibition (DKK-1), tumor cell osteomimicry (RUNX2, CDH11), and invasiveness (CTGF, ITGA5, ITGB3) were identified as targets for repression by miR-30. Among these genes, silencing CDH11 or ITGA5 in ER-/PR-negative breast cancer cells recapitulated inhibitory effects of miR-30 on skeletal tumor burden in vivo. Overall, our findings provide evidence that miR-30 family members employ multiple mechanisms to impede breast cancer bone metastasis and may represent attractive targets for therapeutic intervention. Significance: These findings suggest miR-30 family members may serve as an effective means to therapeutically attenuate metastasis in triple-negative breast cancer

    Circulating tumor cells: approaches to isolation and characterization

    Get PDF
    Circulating tumor cells (CTCs) shed from primary and metastatic cancers are admixed with blood components and are thus rare, making their isolation and characterization a major technological challenge. CTCs hold the key to understanding the biology of metastasis and provide a biomarker to noninvasively measure the evolution of tumor genotypes during treatment and disease progression. Improvements in technologies to yield purer CTC populations amenable to better cellular and molecular characterization will enable a broad range of clinical applications, including early detection of disease and the discovery of biomarkers to predict treatment responses and disease progression
    • …
    corecore