1,073 research outputs found

    Freak observers and the measure of the multiverse

    Get PDF
    I suggest that the factor pjp_j in the pocket-based measure of the multiverse, Pj=pjfjP_j=p_j f_j, should be interpreted as accounting for equilibrium de Sitter vacuum fluctuations, while the selection factor fjf_j accounts for the number of observers that were formed due to non-equilibrium processes resulting from such fluctuations. I show that this formulation does not suffer from the problem of freak observers (also known as Boltzmann brains).Comment: 6 pages, no figures; references adde

    Neutron Stars—Cooling and Transport

    Get PDF
    Observations of thermal radiation from neutron stars can potentially provide information about the states of supranuclear matter in the interiors of these stars with the aid of the theory of neutron-star thermal evolution. We review the basics of this theory for isolated neutron stars with strong magnetic fields, including most relevant thermodynamic and kinetic properties in the stellar core, crust, and blanketing envelopes.The work of A.P. on the effects of strong magnetic fields on blanketing envelopes (Sect. 5.2 and Appendix B) has been supported by the Russian Science Foundation (grant 14-12-00316)

    Predicting the cosmological constant with the scale-factor cutoff measure

    Full text link
    It is well known that anthropic selection from a landscape with a flat prior distribution of cosmological constant Lambda gives a reasonable fit to observation. However, a realistic model of the multiverse has a physical volume that diverges with time, and the predicted distribution of Lambda depends on how the spacetime volume is regulated. We study a simple model of the multiverse with probabilities regulated by a scale-factor cutoff, and calculate the resulting distribution, considering both positive and negative values of Lambda. The results are in good agreement with observation. In particular, the scale-factor cutoff strongly suppresses the probability for values of Lambda that are more than about ten times the observed value. We also discuss several qualitative features of the scale-factor cutoff, including aspects of the distributions of the curvature parameter Omega and the primordial density contrast Q.Comment: 16 pages, 6 figures, 2 appendice

    Boltzmann brains and the scale-factor cutoff measure of the multiverse

    Full text link
    To make predictions for an eternally inflating "multiverse", one must adopt a procedure for regulating its divergent spacetime volume. Recently, a new test of such spacetime measures has emerged: normal observers - who evolve in pocket universes cooling from hot big bang conditions - must not be vastly outnumbered by "Boltzmann brains" - freak observers that pop in and out of existence as a result of rare quantum fluctuations. If the Boltzmann brains prevail, then a randomly chosen observer would be overwhelmingly likely to be surrounded by an empty world, where all but vacuum energy has redshifted away, rather than the rich structure that we observe. Using the scale-factor cutoff measure, we calculate the ratio of Boltzmann brains to normal observers. We find the ratio to be finite, and give an expression for it in terms of Boltzmann brain nucleation rates and vacuum decay rates. We discuss the conditions that these rates must obey for the ratio to be acceptable, and we discuss estimates of the rates under a variety of assumptions.Comment: 32 pp, 2 figs. Modified to conform to the version accepted by Phys. Rev. D. The last paragraph of Sec. V-A, about Boltzmann brains in Minkowski space, has been significantly enlarged. Two sentences were added to the introduction concerning the classical approximation and the hope of finding a motivating principle for the measure. Several references were adde

    Ranking Spaces for Predicting Human Movement in an Urban Environment

    Full text link
    A city can be topologically represented as a connectivity graph, consisting of nodes representing individual spaces and links if the corresponding spaces are intersected. It turns out in the space syntax literature that some defined topological metrics can capture human movement rates in individual spaces. In other words, the topological metrics are significantly correlated to human movement rates, and individual spaces can be ranked by the metrics for predicting human movement. However, this correlation has never been well justified. In this paper, we study the same issue by applying the weighted PageRank algorithm to the connectivity graph or space-space topology for ranking the individual spaces, and find surprisingly that (1) the PageRank scores are better correlated to human movement rates than the space syntax metrics, and (2) the underlying space-space topology demonstrates small world and scale free properties. The findings provide a novel justification as to why space syntax, or topological analysis in general, can be used to predict human movement. We further conjecture that this kind of analysis is no more than predicting a drunkard's walking on a small world and scale free network. Keywords: Space syntax, topological analysis of networks, small world, scale free, human movement, and PageRankComment: 11 pages, 5 figures, and 2 tables, English corrections from version 1 to version 2, major changes in the section of introduction from version 2 to

    The HELLAS2XMM Survey. XII. The infrared/sub-millimeter view of an X-ray selected Type 2 quasar at z=2

    Full text link
    We present multi-wavelength observations (from optical to sub-millimeter, including Spitzer and SCUBA) of H2XMMJ 003357.2-120038 (also GD158_19), an X-ray selected, luminous narrow-line (Type 2) quasar at z=1.957 selected from the HELLAS2XMM survey. Its broad-band properties can be reasonably well modeled assuming three components: a stellar component to account for the optical and near-IR emission, an AGN component (i.e., dust heated by an accreting active nucleus), dominant in the mid-IR, with an optical depth at 9.7 micron along the line of sight (close to the equatorial plane of the obscuring matter) of tau(9.7)=1 and a full covering angle of the reprocessing matter (torus) of 140 degrees, and a far-IR starburst component (i.e., dust heated by star formation) to reproduce the wide bump observed longward of 70 micron. The derived star-formation rate is about 1500 solar masses per year. The overall modeling indicates that GD158_19 is a high-redshift X-ray luminous, obscured quasar with coeval powerful AGN activity and intense star formation. It is probably caught before the process of expelling the obscuring gas has started, thus quenching the star formation.Comment: 7 pages, 3 figures, 1 table, accepted for publication by MNRA

    The XMM large scale structure survey: optical vs. X-ray classifications of active galactic nuclei and the unified scheme

    Full text link
    Our goal is to characterize AGN populations by comparing their X-ray and optical classifications. We present a sample of 99 spectroscopically identified X-ray point sources in the XMM-LSS survey which are significantly detected in the [2-10] keV band, and with more than 80 counts. We performed an X-ray spectral analysis for all of these 99 X-ray sources. Introducing the fourfold point correlation coefficient, we find only a mild correlation between the X-ray and the optical classifications, as up to 30% of the sources have differing X-ray and optical classifications: on one hand, 10% of the type 1 sources present broad emission lines in their optical spectra and strong absorption in the X-rays. These objects are highly luminous AGN lying at high redshift and thus dilution effects are totally ruled out, their discrepant nature being an intrinsic property. Their X-ray luminosities and redshifts distributions are consistent with those of the unabsorbed X-ray sources with broad emission lines. On the other hand, 25/32 are moderate luminosity AGN, which are both unabsorbed in the X-rays and only present narrow emission lines in their optical spectra. The majority of them have an optical spectrum which is representative of the host galaxy. We finally infer that dilution of the AGN by the host galaxy seems to account for their nature. 5/25 have been defined as Seyfert 2. In conclusion, most of these 32 discrepant cases can be accounted for by the standard AGN unified scheme, as its predictions are not met for only 12% of the 99 X-ray sources. ABRIDGEDComment: 25 pages, 19 figures, Accepted for publication in A&

    The XMM-SSC survey of hard-spectrum XMM-Newton sources 1: optically bright sources

    Full text link
    We present optical and X-ray data for a sample of serendipitous XMM-Newton sources that are selected to have 0.5-2 keV vs 2-4.5 keV X-ray hardness ratios which are harder than the X-ray background. The sources have 2-4.5 keV X-ray flux >= 10^-14 cgs, and in this paper we examine a subsample of 42 optically bright (r < 21) sources; this subsample is 100 per cent spectroscopically identified. All but one of the optical counterparts are extragalactic, and we argue that the single exception, a Galactic M star, is probably a coincidental association. The X-ray spectra are consistent with heavily absorbed power laws (21.8 < log NH < 23.4), and all of them appear to be absorbed AGN. The majority of the sources show only narrow emission lines in their optical spectra, implying that they are type-2 AGN. Only a small fraction of the sources (7/42) show broad optical emission lines, and all of these have NH < 10^23 cm^-2. This implies that ratios of X-ray absorption to optical/UV extinction equivalent to > 100 times the Galactic gas-to-dust ratio are rare in AGN absorbers (at most a few percent of the population), and may be restricted to broad absorption-line QSOs. Seven objects appear to have an additional soft X-ray component in addition to the heavily absorbed power law. We consider the implications of our results in the light of the AGN unified scheme. We find that the soft components in narrow-line objects are consistent with the unified scheme provided that > 4 per cent of broad-line AGN have ionised absorbers that attenuate their soft X-ray flux by >50 per cent. In at least one of the X-ray absorbed, broad-line AGN in our sample the X-ray spectrum requires an ionised absorber, consistent with this picture.Comment: accepted for publication in MNRA

    Constraints on Cosmic Strings due to Black Holes Formed from Collapsed Cosmic String Loops

    Get PDF
    The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict ff, the fraction of cosmic string loops which collapse to form black holes, and ÎĽ\mu, the cosmic string mass-per-unit-length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters ff and ÎĽ\mu is due to the energy density in 100MeV100 MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of ff are reliable, our results severely restrict ÎĽ\mu, and therefore limit the viability of the cosmic string large-scale structure scenario.Comment: (Plain Tex, uses tables.tex -- wrapped lines corrected), 11 pages, FERMILAB-Pub-93/137-
    • …
    corecore