1,066 research outputs found
Casein improves brachial and central aortic diastolic blood pressure in overweight adolescents: a randomised, controlled trial
Arterial stiffness, blood pressure (BP) and blood lipids may be improved by milk in adults and the effects may be mediated via proteins. However, limited is known about the effects of milk proteins on central aortic BP and no studies have examined the effects in children. Therefore, the present trial examined the effect of milk and milk proteins on brachial and central aortic BP, blood lipids, inflammation and arterial stiffness in overweight adolescents. A randomised controlled trial was conducted in 193 overweight adolescents aged 12–15 years. They were randomly assigned to drink 1 litre of water, skimmed milk, whey or casein for 12 weeks. The milk-based test drinks contained 35 g protein/l. The effects were compared with the water group and a pretest control group consisting of thirty-two of the adolescents followed 12 weeks before the start of the intervention. Outcomes were brachial and central aortic BP, pulse wave velocity and augmentation index, serum C-reactive protein and blood lipids. Brachial and central aortic diastolic BP (DBP) decreased by 2·7% (P = 0·036) and 2·6 % (P = 0·048), respectively, within the casein group and the changes were significantly different from those of the pretest control group (P = 0·040 and P = 0·034, respectively). There was a significant increase in central aortic DBP, and in brachial and central systolic BP in the whey group compared with the water group (P = 0·003, P = 0·009 and P = 0·002, respectively). There were no changes in measures of arterial stiffness or blood lipid concentrations. A high intake of casein improves DBP in overweight adolescents. Thus, casein may be beneficial for younger overweight subjects in terms of reducing the long-term risk of CVD. In contrast, whey protein seems to increase BP compared with drinking water; however, water may be considered an active control group
Dietary protein content for an optimal diet: a clinical view
The dietary protein role in different clinical nutritional conditions and some physio-pathological perspectives is a current and hot topic to discuss. Recent Proceedings of the Protein Summit 2, joining more than 60 nutrition scientists, health experts, and nutrition educators, suggest to increase plant but, in particular, animal protein intake because richer in leucine and consequently more effective to influence anabolic protein metabolism. The Panel conclusions are in apparent contradiction with the nutritional ecology statements, which strongly sustain the reduction of animal origin foods in the human diet and are currently concerned about the excessive, mainly animal protein intake in western and westernized Countries. In conclusion, it is time to carefully evaluate protein and aminoacid intake accurately considering quality, digestibility, daily distribution and individual characteristics
Protein for Life: Towards a focussed dietary framework for healthy ageing
‘Ageing well’ has been highlighted as an important research area by the World Health Organization. In the UK, healthy ageing has been identified as a priority research area by multiple Research Councils and is a key NHS priority. Sarcopaenia, the decline of muscle mass/strength and a key component of healthy ageing, can have a major impact on quality of life and is associated with premature mortality. Increasing protein intake at all stages of the life course may help to reduce the rate of muscle decline and the onset of associated health conditions. However, there is a lack of understanding of the social, demographic and psychological drivers of food choices surrounding protein intake. This report describes the multidisciplinary approach that has been adopted by the Protein for Life project to create a framework for the development of palatable, cost-effective higher-protein foods suitable for an ageing population
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to β-hydroxy β-methylbutyrate monohydrate (HMB) alone or in combination with α-ketoisocaproic acid (KIC) and reduction of muscle tissue damage during exercise (ID 1577, 1584), increase in lean body mass (ID 1579, 1582, 1583), increase in muscle strength (ID 1578, 1583, 1587), increase in endurance performance (ID 1580, 1581), skeletal muscle tissue repair (ID 1586) and faster recovery from muscle fatigue after exercise (ID 1576, 1585) pursuant to Article 13(1) of Regulation (EC) No 1924/2006
Sufficient levels of 25-hydroxyvitamin D and protein intake required to increase muscle mass in sarcopenic older adults - The PROVIDE study
BACKGROUND:
Inadequate nutritional intake and altered response of aging muscles to anabolic stimuli from nutrients contribute to the development of sarcopenia. Nutritional interventions show inconsistent results in sarcopenic older adults, which might be influenced by their basal nutritional status.
OBJECTIVE:
To test if baseline serum 25-hydroxyvitamin D (25(OH)D) concentrations and dietary protein intake influenced changes in muscle mass and function in older adults who received nutritional intervention.
METHODS AND DESIGN:
Post-hoc analysis was performed in the PROVIDE study that was a randomized controlled, double blind trial among 380 sarcopenic older adults. This study showed that those who received a vitamin D and leucine-enriched whey protein medical nutrition drink for 13 weeks gained more appendicular muscle mass (aMM), and improved lower-extremity function as assessed by the chair stand test compared with controls. To define low and high groups, a baseline serum concentration of 50 nmol/L 25(OH)D and baseline dietary protein intake of 1.0 g/kg/d were used as cut offs.
RESULTS:
At baseline, participants with lower 25(OH)D concentrations showed lower muscle mass, strength and function compared with participants with a high 25(OH)D, while the group with lower protein intake (g/kg/day) had more muscle mass at baseline compared with the participants with higher protein intake. Participants with higher baseline 25(OH)D concentrations and dietary protein intake had, independent of other determinants, greater gain in appendicular muscle mass, skeletal muscle index (aMM/h2), and relative appendicular muscle mass (aMM/body weight × 100%) in response to the nutritional intervention. There was no effect modification of baseline 25(OH)D status or protein intake on change in chair-stand test.
CONCLUSIONS:
Sufficient baseline levels of 25(OH)D and protein intake may be required to increase muscle mass as a result of intervention with a vitamin D and protein supplement in sarcopenic older adults. This suggests that current cut-offs in the recommendations for vitamin D and protein intake could be considered the "minimum" for adults with sarcopenia to respond adequately to nutrition strategies aimed at attenuating muscle loss
Novel essential amino acid supplements enriched with L-leucine facilitate increased protein and energy intakes in older women: a randomised controlled trial
Background: Inadequate protein intake (PI), containing a sub-optimal source of essential amino acids (EAAs), and reduced appetite are contributing factors to age-related sarcopenia. The satiating effects of dietary protein per se may negatively affect energy intake (EI), thus there is a need to explore alternative strategies to facilitate PI without compromising appetite and subsequent EI. Methods: Older women completed two experiments (EXP1 and EXP2) where they consumed either a Bar (565 kJ), a Gel (477 kJ), both rich in EAAs (7.5 g, 40% L-leucine), or nothing (Control). In EXP1, participants (n=10, 68±5 years, mean±SD) consumed Bar, Gel or Control with appetite sensations and appetite-related hormonal responses monitored for one hour, followed by consumption of an ad libitum breakfast (ALB). In EXP2, participants (n=11, 69±5 years) ingested Bar, Gel or Control alongside an ALB. Results: In EXP1, EI at ALB was not different (P=0.674) between conditions (1179±566, 1254±511, 1206±550 kJ for the Control, Bar, and Gel respectively). However, total EI was significantly higher in the Bar and Gel compared to the Control after accounting for the energy content of the supplements (P<0.0005). Analysis revealed significantly higher appetite Area under the Curve (AUC) (P<0.007), a tendency for higher acylated ghrelin AUC (P=0.087), and significantly lower pancreatic polypeptide AUC (P=0.02) in the Control compared with the Bar and Gel. In EXP2, EI at ALB was significantly higher (P=0.028) in the Control (1282±513 kJ) compared to the Bar (1026±565 kJ) and Gel (1064±495 kJ). However, total EI was significantly higher in the Bar and Gel after accounting for the energy content of the supplements (P<0.007). Conclusions: Supplementation with either the Bar or Gel increased total energy intake whether consumed one hour before or during breakfast. This may represent an effective nutritional means for addressing protein and total energy deficiencies in older women
THE IMPACT OF DIETARY PROTEIN OR AMINO ACID SUPPLEMENTATION ON MUSCLE MASS AND STRENGTH IN ELDERLY PEOPLE: INDIVIDUAL PARTICIPANT DATA AND META-ANALYSIS OF RCT’S
Objectives Increasing protein or amino acid intake has been promoted as a promising strategy to increase muscle mass and strength in elderly people, however, long-term intervention studies show inconsistent findings. Therefore, we aim to determine the impact of protein or amino acid supplementation compared to placebo on muscle mass and strength in older adults by combining the results from published trials in a metaanalysis and pooled individual participant data analysis. Design We searched Medline and Cochrane databases and performed a meta-analysis on eight available trials on the effect of protein or amino acid supplementation on muscle mass and strength in older adults. Furthermore, we pooled individual data of six of these randomized double-blind placebo-controlled trials. The main outcomes were change in lean body mass and change in muscle strength for both the meta-analysis and the pooled analysis. Results The meta-analysis of eight studies (n=557) showed no significant positive effects of protein or amino acid supplementation on lean body mass (mean difference: 0.014 kg: 95% CI -0.152; 0.18), leg press strength (mean difference: 2.26 kg: 95% CI -0.56; 5.08), leg extension strength (mean difference: 0.75 kg: 95% CI: -1.96, 3.47) or handgrip strength (mean difference: -0.002 kg: 95% CI -0.182; 0.179). Likewise, the pooled analysis showed no significant difference between protein and placebo treatment on lean body mass (n=412: p=0.78), leg press strength (n=121: p=0.50), leg extension strength (n=121: p=0.16) and handgrip strength (n=318: p=0.37). Conclusions There is currently no evidence to suggest that protein or amino acid supplementation without concomitant nutritional or exercise interventions increases muscle mass or strength in predominantly healthy elderly people
Gsα signalling suppresses PPARγ2 generation and inhibits 3T3L1 adipogenesis
Since TSH receptor (TSHR) expression increases during adipogenesis and signals via cAMP/phospho-cAMP-response element binding protein (CREB), reported to be necessary and sufficient for adipogenesis, we hypothesised that TSHR activation would induce preadipocyte differentiation. Retroviral vectors introduced constitutively active TSHR (TSHR*) into 3T3L1 preadipocytes; despite increased cAMP (RIA) and phospho-CREB (western blot) there was no spontaneous adipogenesis (assessed morphologically, using oil red O and QPCR measurement of adipogenesis markers). We speculated that Gβγ signalling may be inhibitory but failed to induce adipogenesis using activated Gsα (gsp*). Inhibition of phosphodiesterases did not promote adipogenesis in TSHR* or gsp* populations. Furthermore, differentiation induced by adipogenic medium with pioglitazone was reduced in TSHR* and abolished in gsp* expressing 3T3L1 cells. TSHR* and gsp* did not inactivate PPARγ (PPARG as listed in the HUGO database) by phosphorylation but expression of PPARγ1 was reduced and PPARγ2 undetectable in gsp*. FOXO1 phosphorylation (required to inactivate this repressor of adipogenesis) was lowest in gsp* despite the activation of AKT by phosphorylation. PROF is a mediator that facilitates FOXO1 phosphorylation by phospho-Akt. Its transcript levels remained constantly low in the gsp* population. In most measurements, the TSHR* cells were between the gsp* and control 3T3L1 preadipocytes. The enhanced down-regulation of PREF1 (adipogenesis inhibitor) permits retention of some adipogenic potential in the TSHR* population. We conclude that Gsα signalling impedes FOXO1 phosphorylation and thus inhibits PPARγ transcription and the alternative promoter usage required to generate PPARγ2, the fat-specific transcription factor necessary for adipogenesis
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on Dietary Reference Values for protein
This opinion of the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) deals with the setting of Dietary Reference Values (DRVs) for protein. The Panel concludes that a Population Reference Intake (PRI) can be derived from nitrogen balance studies. Several health outcomes possibly associated with protein intake were also considered but data were found to be insufficient to establish DRVs. For healthy adults of both sexes, the average requirement (AR) is 0.66 g protein/kg body weight per day based on nitrogen balance data. Considering the 97.5th percentile of the distribution of the requirement and assuming an efficiency of utilisation of dietary protein for maintenance of 47 %, the PRI for adults of all ages was estimated to be 0.83 g protein/kg body weight per day and is applicable both to high quality protein and to protein in mixed diets. For children from six months onwards, age-dependent requirements for growth estimated from average daily rates of protein deposition and adjusted by a protein efficiency for growth of 58 % were added to the requirement for maintenance of 0.66 g/kg body weight per day. The PRI was estimated based on the average requirement plus 1.96 SD using a combined SD for growth and maintenance.For pregnancy, an intake of 1, 9 and 28 g/d in the first, second and third trimesters, respectively, is proposed in addition to the PRI for non-pregnant women. For lactation, a protein intake of 19 g/d during the first six months, and of 13 g/d after six months, is proposed in addition to the PRI for non-lactating women. Data are insufficient to establish a Tolerable Upper Intake Level (UL) for protein. Intakes up to twice the PRI are regularly consumed from mixed diets by some physically active and healthy adults in Europe and are considered safe
- …
