1,031 research outputs found

    Studying the Salt Dependence of the Binding of σ70 and σ32 to Core RNA Polymerase Using Luminescence Resonance Energy Transfer

    Get PDF
    The study of protein-protein interactions is becoming increasingly important for understanding the regulation of many cellular processes. The ability to quantify the strength with which two binding partners interact is desirable but the accurate determination of equilibrium binding constants is a difficult process. The use of Luminescence Resonance Energy Transfer (LRET) provides a homogeneous binding assay that can be used for the detection of protein-protein interactions. Previously, we developed an LRET assay to screen for small molecule inhibitors of the interaction of σ70 with theβ' coiled-coil fragment (amino acids 100–309). Here we describe an LRET binding assay used to monitor the interaction of E. coli σ70 and σ32 with core RNA polymerase along with the controls to verify the system. This approach generates fluorescently labeled proteins through the random labeling of lysine residues which enables the use of the LRET assay for proteins for which the creation of single cysteine mutants is not feasible. With the LRET binding assay, we are able to show that the interaction of σ70 with core RNAP is much more sensitive to NaCl than to potassium glutamate (KGlu), whereas the σ32 interaction with core RNAP is insensitive to both salts even at concentrations >500 mM. We also find that the interaction of σ32 with core RNAP is stronger than σ70 with core RNAP, under all conditions tested. This work establishes a consistent set of conditions for the comparison of the binding affinities of the E.coli sigma factors with core RNA polymerase. The examination of the importance of salt conditions in the binding of these proteins could have implications in both in vitro assay conditions and in vivo function

    Pathological Investigation of Congenital Bicuspid Aortic Valve Stenosis, Compared with Atherosclerotic Tricuspid Aortic Valve Stenosis and Congenital Bicuspid Aortic Valve Regurgitation

    Get PDF
    Congenital bicuspid aortic valve (CBAV) is the main cause of aortic stenosis (AS) in young adults. However, the histopathological features of AS in patients with CBAV have not been fully investigated.We examined specimens of aortic valve leaflets obtained from patients who had undergone aortic valve re/placement at our institution for severe AS with CBAV (n = 24, CBAV-AS group), severe AS with tricuspid aortic valve (n = 24, TAV-AS group), and severe aortic regurgitation (AR) with CBAV (n = 24, CBAV-AR group). We compared the histopathological features among the three groups. Pathological features were classified using semi-quantitative methods (graded on a scale 0 to 3) by experienced pathologists without knowledge of the patients' backgrounds. The severity of inflammation, neovascularization, and calcium and cholesterol deposition did not differ between the CBAV-AS and TAV-AS groups, and these four parameters were less marked in the CBAV-AR group than in the CBAV-AS (all p<0.01). Meanwhile, the grade of valvular fibrosis was greater in the CBAV-AS group, compared with the TAV-AS and CBAV-AR groups (both p<0.01). In AS patients, thickness of fibrotic lesions was greater on the aortic side than on the ventricular side (both p<0.01). Meanwhile, thickness of fibrotic lesions was comparable between the aortic and ventricular sides in CBAV-AR patients (p = 0.35).Valvular fibrosis, especially on the aortic side, was greater in patients with CBAV-AS than in those without, suggesting a difference in the pathogenesis of AS between CBAV and TAV

    Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements

    Get PDF
    Identification of the state-of-health (SoH) of Li-ion cells is a vital tool to protect operating battery packs against accelerated degradation and failure. This is becoming increasingly important as the energy and power densities demanded by batteries and the economic costs of packs increase. Here, ultrasonic time-of-flight analysis is performed to demonstrate the technique as a tool for the identification of a range of defects and SoH in Li-ion cells. Analysis of large, purpose-built defects across multiple length scales is performed in pouch cells. The technique is then demonstrated to detect a microscale defect in a commercial cell, which is validated by examining the acoustic transmission signal through the cell. The location and scale of the defects are confirmed using X-ray computed tomography, which also provides information pertaining to the layered structure of the cells. The demonstration of this technique as a methodology for obtaining direct, non-destructive, depth-resolved measurements of the condition of electrode layers highlights the potential application of acoustic methods in real-time diagnostics for SoH monitoring and manufacturing processes

    Role of macrophage sialoadhesin in host defense against the sialylated pathogen group B <em>Streptococcus</em>

    Get PDF
    ABSTRACT: Several bacterial pathogens decorate their surfaces with sialic acid (Sia) residues within cell wall components or capsular exopolysaccharides. Sialic acid expression can promote bacterial virulence by blocking complement activation or by engagement of inhibitory sialic acid-binding immunoglobulin-like lectins (Siglecs) on host leukocytes. Expressed at high levels on splenic and lymph node macrophages, sialoadhesin (Sn) is a unique Siglec with an elongated structure that lacks intracellular signaling motifs. Sialoadhesin allows macrophage to engage certain sialylated pathogens and stimulate inflammatory responses, but the in vivo significance of sialoadhesin in infection has not been shown. We demonstrate that macrophages phagocytose the sialylated pathogen group B Streptococcus (GBS) and increase bactericidal activity via sialoadhesin-sialic-acid-mediated recognition. Sialoadhesin expression on marginal zone metallophillic macrophages in the spleen trapped circulating GBS and restricted the spread of the GBS to distant organs, reducing mortality. Specific IgM antibody responses to GBS challenge were also impaired in sialoadhesin-deficient mice. Thus, sialoadhesin represents a key bridge to orchestrate innate and adaptive immune defenses against invasive sialylated bacterial pathogens. KEY MESSAGE: Sialoadhesin is critical for macrophages to phagocytose and clear GBS. Increased GBS organ dissemination in the sialoadhesin-deficient mice. Reduced anti-GBS IgM production in the sialoadhesin-deficient mice. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00109-014-1157-y) contains supplementary material, which is available to authorized users

    Perceived usefulness of a distributed community-based syndromic surveillance system: a pilot qualitative evaluation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We conducted a pilot utility evaluation and information needs assessment of the Distribute Project at the 2010 Washington State Public Health Association (WSPHA) Joint Conference. Distribute is a distributed community-based syndromic surveillance system and network for detection of influenza-like illness (ILI). Using qualitative methods, we assessed the perceived usefulness of the Distribute system and explored areas for improvement. Nine state and local public health professionals participated in a focus group (<it>n = 6</it>) and in semi-structured interviews (<it>n = 3</it>). Field notes were taken, summarized and analyzed.</p> <p>Findings</p> <p>Several emergent themes that contribute to the perceived usefulness of system data and the Distribute system were identified: 1) <it>Standardization: </it>a common ILI syndrome definition; 2) <it>Regional Comparability: </it>views that support county-by-county comparisons of syndromic surveillance data; 3) <it>Completeness: </it>complete data for all expected data at a given time; <it>4) Coverage: </it>data coverage of all jurisdictions in WA state; 5) <it>Context: </it>metadata incorporated into the views to provide context for graphed data; 6) <it>Trusted Data</it>: verification that information is valid and timely; and 7) <it>Customization: </it>the ability to customize views as necessary. As a result of the focus group, a new county level health jurisdiction expressed interest in contributing data to the Distribute system.</p> <p>Conclusion</p> <p>The resulting themes from this study can be used to guide future information design efforts for the Distribute system and other syndromic surveillance systems. In addition, this study demonstrates the benefits of conducting a low cost, qualitative evaluation at a professional conference.</p

    Complete chloroplast genome sequence of Holoparasite Cistanche Deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from Its host Haloxylon Ammodendron (Chenopodiaceae)

    Get PDF
    The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. The authors report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae

    NO Dioxygenase Activity in Hemoglobins Is Ubiquitous In Vitro, but Limited by Reduction In Vivo

    Get PDF
    Genomics has produced hundreds of new hemoglobin sequences with examples in nearly every living organism. Structural and biochemical characterizations of many recombinant proteins reveal reactions, like oxygen binding and NO dioxygenation, that appear general to the hemoglobin superfamily regardless of whether they are related to physiological function. Despite considerable attention to “hexacoordinate” hemoglobins, which are found in nearly every plant and animal, no clear physiological role(s) has been assigned to them in any species. One popular and relevant hypothesis for their function is protection against NO. Here we have tested a comprehensive representation of hexacoordinate hemoglobins from plants (rice hemoglobin), animals (neuroglobin and cytoglobin), and bacteria (Synechocystis hemoglobin) for their abilities to scavenge NO compared to myoglobin. Our experiments include in vitro comparisons of NO dioxygenation, ferric NO binding, NO-induced reduction, NO scavenging with an artificial reduction system, and the ability to substitute for a known NO scavenger (flavohemoglobin) in E. coli. We conclude that none of these tests reveal any distinguishing predisposition toward a role in NO scavenging for the hxHbs, but that any hemoglobin could likely serve this role in the presence of a mechanism for heme iron re-reduction. Hence, future research to test the role of Hbs in NO scavenging would benefit more from the identification of cognate reductases than from in vitro analysis of NO and O2 binding

    Structure-based prediction of insertion-site preferences of transposons into chromosomes

    Get PDF
    Mobile genetic elements with the ability to integrate genetic information into chromosomes can cause disease over short periods of time and shape genomes over eons. These elements can be used for functional genomics, gene transfer and human gene therapy. However, their integration-site preferences, which are critically important for these uses, are poorly understood. We analyzed the insertion sites of several transposons and retroviruses to detect patterns of integration that might be useful for prediction of preferred integration sites. Initially we found that a mathematical description of DNA-deformability, called V(step), could be used to distinguish preferential integration sites for Sleeping Beauty (SB) transposons into a particular 100 bp region of a plasmid [G. Liu, A. M. Geurts, K. Yae, A. R. Srinivassan, S. C. Fahrenkrug, D. A. Largaespada,J. Takeda, K. Horie, W. K. Olson and P. B. Hackett (2005) J. Mol. Biol., 346, 161–173 ]. Based on these findings, we extended our examination of integration of SB transposons into whole plasmids and chromosomal DNA. To accommodate sequences up to 3 Mb for these analyses, we developed an automated method, ProTIS(©), that can generate profiles of predicted integration events. However, a similar approach did not reveal any structural pattern of DNA that could be used to predict favored integration sites for other transposons as well as retroviruses and lentiviruses due to a limitation of available data sets. Nonetheless, ProTIS(©) has the utility for predicting likely SB transposon integration sites in investigator-selected regions of genomes and our general strategy may be useful for other mobile elements once a sufficiently high density of sites in a single region are obtained. ProTIS analysis can be useful for functional genomic, gene transfer and human gene therapy applications using the SB system

    The Secret to Successful User Communities: An Analysis of Computer Associates’ User Groups

    Get PDF
    This paper provides the first large scale study that examines the impact of both individual- and group-specific factors on the benefits users obtain from their user communities. By empirically analysing 924 survey responses from individuals in 161 Computer Associates' user groups, this paper aims to identify the determinants of successful user communities. To measure success, the amount of time individual members save through having access to their user networks is used. As firms can significantly profit from successful user communities, this study proposes four key implications of the empirical results for the management of user communities
    corecore