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Abstract

Background: The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are
highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the
chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the
number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants.

Principal Findings/Significance: Here we report the complete sequence of the cp genome of Cistanche deserticola, a
holoparasitic desert species belonging to the family Orobanchaceae. The cp genome of C. deserticola is greatly reduced
both in size (102,657 bp) and in gene content, indicating that all genes required for photosynthesis suffer from gene loss
and pseudogenization, except for psbM. The striking difference from other holoparasitic plants is that it retains almost a full
set of tRNA genes, and it has lower dN/dS for most genes than another close holoparasitic plant, E. virginiana, suggesting
that Cistanche deserticola has undergone fewer losses, either due to a reduced level of holoparasitism, or to a recent switch
to this life history. We also found that the rpoC2 gene was present in two copies within C. deserticola. Its own copy has much
shortened and turned out to be a pseudogene. Another copy, which was not located in its cp genome, was a homolog of
the host plant, Haloxylon ammodendron (Chenopodiaceae), suggesting that it was acquired from its host via a horizontal
gene transfer.
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Introduction

The chloroplast is an important organelle in the plant cell, and

its central function is to carry out photosynthesis and carbon

fixation. In general, the chloroplast (cp) genome is highly

conserved among seed plants with two copies of a large inverted

repeat (IR) separated by small single copy (SSC) and large single

copy (LSC) regions [1]. It usually contains 110–130 unique genes,

which can be roughly divided into three large groups according to

their functions: genetic system genes, photosynthesis genes and

conserved open reading frames with miscellaneous functions [2].

However, a small group of angiosperm plants appear to have

escaped from this dominant pattern by evolving the capacity to

gain the water, carbon and nutrients via the vascular tissue of the

parasitized host’s roots or shoots. This means that these parasitic

plants have reduced (or no) photosynthetic ability, and no longer

need genes that encode photosynthetic proteins. With the selective

constraints on their cp coding genes relaxed, gene losses occur in

these parasitic plants [3]. It is estimated that approximately 1% of

all angiosperm species have resorted to a parasitic lifestyle, which

has independently evolved 12 or 13 times [4]. Compared with a

rapid rise in the number of cp genomes of photosynthetic

organisms available on NCBI (254 in Viridiplantae, as of

December 4, 2012), there are limited data sets from parasitic

plants, especially from the completely non-photosynthetic species.

In higher plants, the cp genome of holoparasite Epifagus virginiana

in the family Orobanchaceae was sequenced first [5], followed by

four species from the holoparasitic genus Cuscuta [6,7], and three
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mycoheterotrophic plants, including Aneura mirabilis [8], Rhi-

zanthella gardneri [9], and Neottia nidus-avis [10]. However, only

one species of the completely non-photosynthetic plants, E.

virginiana, which exploit other plants via direct connections rather

than by mycorrhizal fungi, has been comprehensively analyzed in

its cp genome structure and composition.

Orobanchaceae, as taxonomically redefined by a series of recent

molecular studies, comprise around 89 genera and more than

2,000 species, making it the largest predominantly parasitic

angiosperm family, the majority of which are facultative or

obligate root parasites [11–16]. It contains all levels of parasitic

ability ranging from nonparasitic to hemiparasitic and holopar-

asitic [12,17]. Therefore, analyses of cp genomes of other

holoparasitic species within the family Orobanchaceae could

confirm the common attributes of non-photosynthetic evolution

and provide point for genetic analysis of cp genome evolution.

In Orobanchaceae, Cistanche is a worldwide genus of holopar-

asitic desert plants. Specifically, C. deserticola, commonly known as

desert-broomrape and traditionally used as an important tonic in

China and Japan, is distributed in Northwest China and the

Mongolian People’s Republic, and is also considered to be an

endangered wild species in recent years due to increased

consumption by humans [16]. C. deserticola is parasitized on the

roots of psammophyte Haloxylon ammodendron (Chenopodiaceae),

which mainly inhabit deserts and semi-deserts due to its high

tolerance to drought and salinity. Similar to E. virginiana, C.

deserticola is a completely non-photosynthetic species and usually

grows underground. A number of studies about the chemical

components or pharmacological effects of this species have been

reported [1,18,19]. Further analysis of its cp genome structure and

composition could provide new insights on the evolution of the

parasitic cp genome.

Attributed to the direct connections between parasitic plants

and their hosts, which allows the channelling of metabolites, such

as sugars, amino acids and perhaps nucleic acids in the form of

mRNA, direct haustorial contact between them usually facilitates a

horizontal gene transfer (HGT) from a donor to a recipient plant

[20]. HGT, known as exchange of genes across mating barriers,

has played a major role in bacterial evolution. In recent years,

increasing studies have reported HGT being recognized as a

significant force in the evolution of eukaryotic genomes [21,22]. In

plants, the evolutionarily earliest examples of HGT might be the

endosymbioses that gave rise to mitochondria and chloroplasts

[23,24]. Since the emergence of HGT events, usually detected as

incongruences in molecular phylogenetic trees, a considerable

number of studies have suggested gene exchanges between hosts

and parasites [4,25–30].

Although the HGT involving parasitic plants appears to have

occurred in many parasitic lineages, the majority of reported cases

of HGT have been limited to exchanges between mitochondrial

genes among related species [4,25]. Cases of HGT involving cp

genomes are rare [29]. The disparity in frequency of plant-to-plant

HGT between the mitochondrial and the cp genomes is

considered due to an active homologous recombination system

[31,32]. It is reported that a chloroplast region including rps2, trnL-

F, and rbcL among a group of nonphotosynthetic flowering plants,

Phelipanche and Orobanche species, both from the family Oroban-

chaceae, were detected according to the phylogenetic trees based

on available data [29].

In order to examine the effect of its non-photosynthetic life

history on cp genome content, we sequenced the entire cp genome

of C. deserticola. As a completely non-photosynthetic species from

Orobanchaceae, it shows the same pattern in the process of gene

loss as in chloroplasts of E. virginiana and other parasitic plants. We

also found that C. deserticola has two copies of a cp gene rpoC2, one

becoming a pseudogene, the other being horizontally acquired

from the host H. ammodendron, according to a homology search and

phylogenetic analysis.

Materials and Methods

Genome Sequencing and Assembly
The spikes of C. deserticola were collected from a plant base in

Bayannur City of Inner-Mongolia area which was introduced from

natural populations located in desert area of Inner Mongolia in

northeastern China. The collecting permit was obtained from the

owner (Jun Wei) of the plant base. The voucher specimen was

deposited in the MOE Key Laboratory for Biodiversity Science

and Ecological Engineering at Fudan University. For cp genome

sequencing, total genomic DNA extraction was performed using

the Plant Genomic DNA Kit (Tiangen Biotech Co., China),

following the manufacturer’s instructions. The fragments of cp

DNA were amplified by the polymerase chain reaction (PCR). In

brief, due to loss and pseudogenizations in the cp genome of C.

deserticola, PCR primers were designed using the reported PCR

primers from several sources. The primers of the LSC region were

designed using the reported conserved cp DNA primer pairs,

which including 38 primer pairs as well as eight primer pairs

flanking cpDNA microsatellites tested on 20 plant species from 13

families [33]. Only 14 of the 38 primer pairs are useable in C.

deserticola. Then the primers for other regions were designed

according to the primers of the cp genome available in the cp

genome database [34]. Some primers were also developed from

the cp genome sequences of related species (Olea europaea and E.

virginiana) for specific regions. In order to amplify longer fragments,

some of these primers were used combined, and some of them

were designed based on the newly determined sequences of

adjacent regions. By using all above primers, we covered the entire

cp genome of C. deserticola with PCR fragments ranging in size

from 500 bp to 3 kb. The overlapping regions of each pair of

adjacent PCR fragments exceeded 150 bp. The amplified product

was purified, and ligated into TaKaRa pMD19-T plasmids

(TaKaRa BioInc, Shiga, Japan), which were then cloned into

Escherichia coli strain DH5a. Multiple ($6) clones were randomly

selected and followed by automated sequencing using ABI 3730xl

DNA Analyzer (Applied Biosystems, Foster City, CA). All

fragments were sequenced 2–10 times (6-fold coverage of the C.

deserticola cp genome on average). All these individual sequences

were excluded vector, primer and low-quality reads, and then

assembled using Sequencher 3.0 software (Gene Codes Corpora-

tion, USA). The inverted repeat regions (IRs) of the cpDNA were

not amplified separately, but primers were designed to amplify the

regions spanning the junctions of LSC/IRA, LSC/IRB, SSC/IRA

and SSC/IRB. Considering two IRs cannot be distinguished by

automated assembly software, we input the reads as two groups

and obtained two large contigs, with each contig including one IR

and its adjacent partial LSC and SSC regions. Then, the two large

contigs were manually assembled into the complete circular

genome sequence.

Genome Annotation and Molecular Evolutionary
Analyses

Initial gene annotations were performed using the chloroplast

annotation package DOGMA (http://phylocluster.biosci.utexas.

edu/dogma/) [35]. Genes that were undetected by DOGMA,

such as psbB, psbK, trnG-GCC, rpoC2, atpB, accD, and ycf1, were

identified by Blastn (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The

correctness of the annotation for all genes was additionally verified

Chloroplast Genome of Cistanche deserticola
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by a similarity search against the available plant cp genome

sequences. The regions with similarity to known protein coding

genes but lacking intact open reading frames (ORF) were

identified as pseudogenes. tRNA genes were annotated using

DOGMA and ARAGORN v1.2 (http://130.235.46.10/

ARAGORN/) [36], and then confirmed by ERPIN (http://

tagc.univ-mrs.fr/erpin/) [37]. The circular gene map of the C.

deserticola cp genome was drawn by GenomeVx [38] followed by

manual modification. An assembled and corrected sequence of C.

deserticola cp genome was deposited in GenBank.

To estimate the selection constraint on the genes remaining in

C. deserticola cp genome, the protein-coding genes that shared

between C. deserticola, E. virginiana, and related photosynthetic

species O. europaea were chosen to calculate the ratio of the rates of

nonsynonymous and synonymous changes (dN/dS). Nicotiana

tabacum was also included in the analyses to calculate dN/dS for

photosynthetic plants. Alignment was performed using ClustalW

[39]. The pairwise dS, dN and dN/dS ratios were calculated using

DnaSP ver. 5 [40].

Isolation and Sequencing of Potential HGT Gene (rpoC2)
In this study, we found that C. deserticola harbours another copy

of rpoC2 outwith its own, which corresponds to the phylogenetic

position of the host H. ammodendron. We propose that this copy

arose via horizontal gene transfer. In order to confirm if HGT

occurred across the range of C. deserticola, we sampled 50

accessions from the same plant base in Bayannur City which were

introduced from five natural populations located in Alxa Left

Banner, Alxa Right banner (two populations), and Urad Rear

Banner in the Inner-Mongolia area, as well as Hetian in the

Xinjiang area. In order to confirm if the HGT occurred across the

range of C. deserticola, total DNA extractions from these materials

and cp rpoC2 genes amplified by standard PCR were performed in

two different labs, thus, eliminating laboratory contamination.

The rpoC2 gene was amplified using primers f4 (59-GATAGA-

CATCGGTACTCCAGTGC-39) and r6 (39-TCATTATGG-

GAATGTACACGCG-59) with the following conditions: 94uC
for 2.5 min; 35 cycles each at 94uC for 1 min,55uC for 30 s, 72uC
for 1 min. In H. ammodendron, the five clones of rpoC2 gene were

also checked.

Phylogenetic Analyses of the Potential HGT Gene, rpoC2
All the copies of rpoC2 sequences detected in C. deserticola and H.

ammodendron were used as queries for BLASTN searches against the

NCBI database (E-value ,1023) [41] to identify and retrieve their

homologs. On the basis of Angiosperm Phylogeny Group III [42],

sampling for the present study focused on members of the clade

Lamiales and Caryophyllales that includes two families Oroban-

chaceae and Chenopodiaceae. Finally, 29 sequences were sampled

for the rpoC2 phylogenetic analyses, using Oryza nivara

(NC_005973) as outgroups. Sequences were unambiguously

aligned manually in BioEdit 7.0.4.1 [43].

Phylogenetic analyses were performed using maximum likeli-

hood in PAUP v. 4.0b10 [44] and Bayesian inference in MrBayes

v. 3.1 [45]. The appropriate ML model of nucleotide substitution

(GTR+I+G) was determined by Modeltest 3.7 [46] according to

the Akaike information criteria (AIC) [47]. Relative clade support

was estimated by ML bootstrap analysis of 100 replicates of

heuristic searches with settings as above. Bayesian analysis was

performed with MrBayes 3.1 using same model (GTR+I+G)

suggested by MrModeltest v2.2 [48]. The settings for the

Metropolis-coupled Markov chain Monte Carlo process were:

three runs with four chains each were run simultaneously for 1*107

generations, which were logged every 1000 generations. Conver-

gence was considered to have been reached when the variance of

split frequencies was ,0.01. The first 2500 generations were

discarded as the transient burn-in period. The 50%-majority-rule

consensus of trees sampled in the Bayesian phylogenetic analysis

was used to construct a phylogram.

Results

The cp Genome Structure of C. deserticola
As expected, the cp genome of C. deserticola [GenBank number:

KC128846] is greatly reduced in size (102,657 bp) and in gene

content. It is a quadripartite structure typical of the majority of

land plant chloroplast chromosomes with a large single copy (LSC)

region of 49,130 bp separated from 8,819 bp small single copy

(SSC) region by two inverted repeats (IRs), each of 22,354 bp

(Fig. 1). In angiosperms, it is the fourth completely nonphotosyn-

thetic species and the eighth parasitic species of which complete

sequences of the cp genome are now available. Among these

species, the cp genome of C. deserticola is larger than those of other

five holoparasites species (E. virginiana, R. gardneri, N. nidus-avis,

Cuscuta obtusiflora and C. gronovii), but is smaller than those of other

hemiparasitic Cuscuta species, which has more or less green color

distributed throughout the stems and inflorescences (Tables 1, 2).

When the IR is considered only once, the cp genome of C.

deserticola contains 60 genes, encoding 27 proteins, 4 ribosomal

RNAs (rRNA) and 30 transfer RNAs (tRNA). The positions of 61

genes, including 29 unique and 16 duplicated ones in the IRs

regions, were localized on the map (Fig. 1). The cp genome of C.

deserticola has an overall GC content of 36.8%, which is similar to

E. virginiana (36%) but slightly lower than the photosynthetic

species Nicotiana tabacum (37.8%). Like other land plants [49,50],

GC content is unevenly distributed across the C. deserticola cp

genome. The highest GC content is in the IRs (43%), reflecting the

high GC content of rRNA genes, and the lowest is in the SSC

(27.5%) region.

Although C. deserticola has a relatively larger cp genome

sequence, it also exhibited severe physiological reductions: all

genes required for photosynthesis (encoding photosystem I and II

components, cytochrome b6f complex, NAD(P)H dehydrogenase,

photosystem assembly factors (ycf3, ycf4) and ATP synthase)

suffered gene losses and pseudogenizations except for psbM.

Additional pseudogenization is also seen in genes encoding cp-

encoded RNA polymerase (rpo), Cytochrome c biogenesis protein

(ccsA), and Acetyl-CoA carboxylase (accD). C. deserticola retains

many genes of the translation machinery, including 8 rpl genes,

11 rps genes, and an initiation factor, infA. Only rpl23 is

apparently a pseudogene with nonfunctional reading frames

(Table 1).

In E. virginiana, a total of five tRNAs were pseudogenized and

eight tRNAs were lost [51]. In contrast, C. deserticola retains almost

all the rRNA and tRNA genes: two identical copies of rRNA gene

clusters (16S-23S-4.5S-5S) were found in the IR regions; 30

different tRNAs, which can recognize all 61 codons present in the

cp genes, were identified (Table 1, Fig. 1). Intron content of genes

retained in the C. deserticola cp genome is conserved with other seed

plants: it has 11 genes with introns, six in tRNAs and 5 in protein

coding genes. Two of the 12 intron-containing genes have a single

intron and two genes, clpP and rps12, have two introns. All of these

belong to the group II intron, whereas trnL-UAA is the only group

I intron. Among the tRNA genes, trnK-UUU has a special role,

since the only RNA maturase gene (matK) found on the cp genome

was located in its intron [52]. Unlike other parasitic plants, C.

deserticola harbours the complete trnK-UUU gene, including its

intron matK gene (Table 1, Fig. 1).

Chloroplast Genome of Cistanche deserticola

PLOS ONE | www.plosone.org 3 March 2013 | Volume 8 | Issue 3 | e58747



The examination of pairwise dN/dS ratio for the alignable genes

shared between C. deserticola, E. virginiana and their autotrophic

relatives demonstrates that most of genes are under greater

constraint in fully nonphotosynthetic E. virginiana and C. deserticola

than photosynthetic species O. europaea and N. tabacum (Fig. 2). In

addition, of 15 protein-coding genes shared between E.virginiana

Figure 1. Gene Maps of the plastid chromosomes of C. deserticola. Genes shown inside the circle are transcribed clockwise, those outside the
circle are transcribed counterclockwise. The large single copy region (LSC) and the small single copy region (SSC) are separated by two inverted
repeats (IRa and IRb). Asterisks indicate intron containing genes. Pseudogenes are marked by Y.
doi:10.1371/journal.pone.0058747.g001
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Table 1. Gene contents of plastidome of Cistanche deserticola compared to Nicotiana tabacum and other parasitic plants (based
on this research and previous reports [6,9,67]).

Photosynthesis and energy
production genes

Ribosomal
RNA genes

Transfer
RNA genes

Nt Cr CoCg Ce CdEv Rg Nn Nt Cr Co Cg Ce Cd Ev Rg Nn Nt Cr Co Cg Ce CdEv Rg Nn

atpA N N N N N Y Y N Y rrn16 N N N N N N N N N trnA-ugc N N # Y N N Y # N

atpB N N N N N Y Y # Y rrn23 N N N N N N N N N trnC-gca N N N N N N Y N N

atpE N N N N N Y # # Y rrn4.5 N N N N N N N N N trnD-guc N N N N N N N N N

atpF N N N N N Y # # # rrn5 N N N N N N N N N trnE-uuc N N N N N N N N N

atpH N N N N N # # # # trnF-gaa N N N N N N N N N

atpI N N N N N # # # Y trnfM-cau N N N N N N N N N

ndhA N # # # # # # # Y trnG-gcc N N N N N N # # N

ndhB N Y # # Y Y Y # Y RNA polymerase and intron maturase genes trnG-ucc N N # Y N N # # N

ndhC N # # # # # # # Y trnH-gug N N N N N N N # N

ndhD N # # # Y # # # # Nt Cr Co Cg Ce Cd Ev Rg Nn trnI-cau N N N N N N N N N

ndhE N # # # # # # # # trnI-gau N N # Y N N Y # #

ndhF N # # # # # # # # matK N N # # N N N # Y trnK-uuu N # # # # N # # N

ndhG N # # # # # # # # rpoA N N Y # N Y Y # # trnL-caa N N N N N N N # N

ndhH N # # # # Y # # Y rpoB N N # # N Y # # Y trnL-uaa N N N N N N # Y N

ndhI N # # # # # # # # rpoC1 N N # # N # # # # trnL-uag N N N N N N N # N

ndhJ N # # # # # # # Y rpoC2 N N # # N Y # # Y trnM-cau N N N N N N N # N

ndhK N # # # # # # # # trnN-guu N N N N N N N # N

petA N N N N N # # # Y trnP-ugg N N N N N N N # Y

petB N N N N N # # # # Ribosomal protein and initiation factor genes trnQ-uug N N N N N N N N N

petD N N N N N # # # # trnR-acg N N # Y N N N # N

petG N N N N N Y # # Y Nt Cr Co Cg Ce Cd Ev Rg Nn trnR-ucu N N N N N N Y # N

petL N N N N N # # # Y infA Y # # # Y N N N N trnS-gcu N N N N N N N # N

petN N N N N N # # # # rpl14 N N N N N N Y N N trnS-gga N N N N N N Y # N

psaA N N N N N Y # # Y rpl16 N N N N N N N N N trnS-uga N N N N N N N # N

psaB N N N N N Y # Y Y rpl2 N N N N N N N N N trnT-ggu N N N N N N # # N

psaC N N N N N # # # # rpl20 N N N N N N N N N trnT-ugu N N N N N N # # N

psaI N N # # N # # # # rpl22 N N N N N N # # N trnV-gac N N N N N N # # N

psaJ N N N N N # # # Y rpl23 N Y # # Y Y Y N N trnV-uac N N # # N N # # N

psbA N N N N N Y Y # # rpl32 N N # # N N # # N trnW-cca N N N N N N N N N

psbB N N N N N Y Y # # rpl33 N N N N N N N Y N trnY-gua N N N N N N N N N

psbC N N N N N Y # # Y rpl36 N N N N N N N N N

psbD N N N N N Y # # Y rps11 N N N N N N N N N Other essential genes

psbE N N N N N # # # # rps12 N N N N N N N Y N

psbF N N N N N Y # # # rps14 N N N N N N N N N Nt Cr Co Cg Ce Cd Ev Rg Nn

psbH N N N N N # # # # rps15 N N N N N N # # N ClpP N N N N N N N N N

psbI N N N N N # # # # rps16 N Y # # Y N # # Y accD N N N N N Y N N N

psbJ N N N N N Y # # # rps18 N N N N N N N N Y cemA N N N N N # # # #

psbK N N N N N Y # # Y rps19 N N N N N N N N N ccsA # N N N N Y # # #

psbL N N N N N Y # # # rps2 N N N N N N N N N ycf1 N N N N N Y N N N

psbM N N N N N N # # Y rps3 N N N N N N N N N ycf2 N N N N N N N N N

psbN N N N N N # # # # rps4 N N N N N N N N N ycf3 N N N N N Y # # Y

psbT N N N N N # # # # rps7 N N N N N N N N N ycf4 N N N N N Y # # #

rbcL N N N N N Y Y # Y rps8 N N N N N N N N N ycf15 N Y # Y Y N Y # #

Nt, Nicotiana tabacum; Cr, Cuscuta reflexa; Co, Cuscuta obtusiflora; Cg, Cuscuta gronovii; Ce, Cuscuta exaltata; Cd, Cistanche deserticola; Ev, Epifagus virginiana; Rg,
Rhizanthella gardneri; Nn, Neottia nidus-avis; Y, pseudogene; N, present; #, missing.
doi:10.1371/journal.pone.0058747.t001
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and C. deserticola, 13 genes have a higher dN/dS in E.virginiana than

in C. deserticola (Fig. 2).

Horizontal Transfer of rpoC2 from Host to Parasitic Plants
We used the general primers of rpoC2 to amplify the total DNA

of C. deserticola and subsequent cloning. Contrary to our

expectation, the sequences obtained resemble the genes of H.

ammodendron but not C. deserticola, based on sequence similarity

through BLAST and phylogenetic trees (GenBank number:

KC543998, Fig. 3). This raised the possibility that HGT may

have occurred between the parasite and its host. In order to

confirm this result, we ruled out that the results were due to

contamination or mixing-up of templates by repeating the

experiment in a different laboratory. The results of the amplifi-

cation are congruent with the previous results. Then, we

confirmed the presence of the H. ammodendron type copy in 46

accessions out of 50 samples from five C. deserticola populations by

using the same specific primers. Four of the accessions’ lack of

amplification was probably due to poor DNA quality. The

transferred rpoC2 copy (H. ammodendron type) amplified from C.

deserticola is about 1050 bp, and covers amino acid positions 98–

443 (nucleotide positions 294–1329) of the rpoC2 gene of O. europea.

To clarify the evolutionary characteristics of the rpoC2 fragment

transferred from H. ammodendron to C. deserticola, we aligned the

nucleotide sequences of H. ammodendron type rpoC2 amplified from

both of two plants with intact open reading frames of other related

species. The results indicated that the transferred rpoC2 fragment

differed from functional copies in a few point mutations and one

key nucleotide insertion (C in 927 bp), which resulted in several

subsequent premature termination codons and frame shifts

mutations (Fig. 4). Because the H. ammodendron type rpoC2 was

not found in the complete cp genome of C. deserticola, we

speculated it should be transferred into the nuclear or mitochon-

drial genome.

However, C. deserticola’s own rpoC2 copies were not detected by

PCR amplification using specific primers, which make us consider

that this gene was lost or turned out to be a pseudogene. Thus, we

searched the finished cp genome of C. deserticola with rpoC2

homologues by the BLAST method. The results shown that C.

Table 2. Global features of Cistanche deserticola plastidome compared to Nicotiana tabacum and other parasitic plants.

Species Accession no Size (nt)
Number
of genesa

Number of
pseudogenes

Number of
tRNAsb

number of genes
with introns Reference

Rhizanthella gardneri GQ413967 59,190 37 6 9 4 [9]

Epifagus virginiana NC_001568 70,028 53 18 17 4 [5]

Cuscuta obtusiflora NC_009949 85,280 98 1 24 5 [7]

Cuscuta gronovii AM711639 86,744 99 5 24 5 [6]

Neottia nidus-avis JF325876 92,060 74 28 28 8 [10]

Cistanche deserticola KC128846 102,657 77 32 30 14 this study

Cuscuta reflexa AM711640 121,521 115 4 29 16 [6]

Cuscuta exaltata NC_009963 125,373 112 8 29 16 [7]

Nicotiana tabacum NC_001879 155,939 151 1 30 23 [68]

Data in this table came from analyses using sequences on GenBank or plastid chromosomes gene maps in their original report.
aNumber of genes excluding the pseudogenes. Duplicated genes in the IR regions were counted twice.
bDuplicated tRNAs were counted both.
doi:10.1371/journal.pone.0058747.t002

Figure 2. Pairwise dN/dS value of C. deserticola (Cd), E. virginiana (Ev) and N. tabacum (Nt) vs. O. europaea (Oe) for all shared protein-
coding genes. *indicates gene lost, #indicates the absence of non synonymous substitutions, $indicates the absence of synonymous substitutions.
doi:10.1371/journal.pone.0058747.g002

Chloroplast Genome of Cistanche deserticola

PLOS ONE | www.plosone.org 6 March 2013 | Volume 8 | Issue 3 | e58747



deserticola also retains its own significant shortened rpoC2, which has

turned out to be a pseudogene of only 439 bp.

Phylogenetic Analysis of Transferred rpoC2 Gene
The HGT result was further supported by our phylogenetic

analysis. Maximum likelihood and Bayesian trees constructed

using the two methods described earlier gave congruent results

(Fig. 3). The two orders Lamiales and Caryophyllales confirmed as

well as supported distinct clades in the phylogenetic tree. The

transferred rpoC2 is located in the clade Caryophyllales (host clade)

but does not cluster inside Lamiales (parasitic clade), which forms

a clade with a relatively strong bootstrap support. The retained

rpoC2 (C. deserticola type copy) was not used in this analysis because

its sequence was severely fragmented when align with other

Figure 3. Phylogenetic evidence for horizontal gene transfer of the plastid rpoC2 from Haloxylon ammodendron to Cistanche
deserticola. Lamiales are coloured in red, and Caryophyllales are coloured in blue. While the ten C. deserticola sequences involved in horizontal gene
transfer are coloured in red. Numbers at nodes are posterior probabilities .0.60 and maximum likelihood bootstrap values .60. The Genebank
number: Oryza nivara, NC_005973; Antirrhinum indicum, GQ997028; Sesamum indicum, NC_016433; Boea hygrometrica, NC_016468; Jasminum
nudiflorum, NC_008407; Olea europaea, NC_013707; Basella alba, HQ843359; Opuntia microdasys, HQ843375; Pereskia aculeata, HQ843376; Portulaca
oleracea, HQ843380; Mollugo verticillata, HQ843373; Bougainvillea glabra, HQ843360; Mirabilis jalapa, HQ843372; Phytolacca americana, HQ843378;
Celosia cristata, HQ843361; Spinacia oleracea, NC_002202; Silene conica, NC_016729; Stellaria media, HQ843386; Cistanche deserticola (HGT),
KC543998.
doi:10.1371/journal.pone.0058747.g003
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homologs. The sequence alignment and the phylogenetic distri-

bution of the rpoC2 in Chenopodiaceae suggest that the horizontal

gene transfer happened between the host H. ammodendron and

parasitic plant C. deserticola.

Discussion

Gene Losse in the cp Genome of C. deserticola
Compared to more than 250 completely sequenced cp genomes

of photosynthetic plants, the number of fully sequenced cp

genomes of non-photosynthetic plants is very small. To date, only

eight heterotrophic species, exhibiting parasitic lifestyles and

having strongly reduced cp genomes, have been thoroughly

investigated with respect to their cp genome sequences [5]. In this

study, we have sequenced the cp genome of C. deserticola, a

holoparasitic species from Orobanchaceae with the expectation

that comparison of cp genomic features between these two

relatives will provide further insights on parasitic cp genome

evolution.

The overlapping PCR products have indicated the reduced

circular form of the cp chromosomes in C. deserticola. Similar to E.

virginiana, almost all of its photosynthetic genes have been lost or

have become pseudogenes after the loss of a major metabolic

function. It is different from other heterotrophic plants in many

ways: it retains almost all the tRNA genes; the photosynthetic gene

psbM remains as residues and others suffered gene pseudogeniza-

tions rather than losses as E. virginiana; C. deserticola harbours

complete trnK-UUU gene but not its intron matK gene, and so on.

Some parasitic species exhibit extensive losses of tRNA genes

(Table 1). In E. virginiana, a total of 13 tRNAs were pseudogenized

or lost. As in photosynthetic plants, C. deserticola encompasses

around 30 tRNA genes in cp genomes, and it is the only one of

parasitic plants which possessed a full cp tRNA set as nonparasitic

plants. This suggests that the loss of the transfer RNA genes from

the cp genome occurred later than those of photosynthesic genes.

Figure 4. Position of inserted cytosine within the transferred rpoC2 gene. (A) Alignment of the nucleotide sequences of transferred rpoC2
gene amplified from parasite and host with intact open reading frames of other related species. The inserted cytosine was labeled with colored
vertical lines. (B) Inserted cytosine resulted in followed premature termination codon in the transferred rpoC2 in Cistanche deserticola.
doi:10.1371/journal.pone.0058747.g004
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Most of the splicing factors are nuclear-encoded, but one

maturase protein is encoded by a cp gene, matK, which was

located within an intron of trnK-UUU [52,53]. The trnK gene is

lost in all parasitic angiosperm cp genomes except for C. deserticola

and Neottia nidus-avis (Table 1). In the Neottia cp genome, the intron

matK is a pseudogene with strong divergence of its 59end

compared to other photosynthetic orchids [10]. In contrast, in

C. reflexa, C. exaltata, and E. virginiana, matK has been retained as a

free-standing gene [52,54]. Unlike other parasitic angiosperm

species, neither the trnK-UUU gene nor its intron matK gene was

missing in C. deserticola. It has been reported that matK is also

needed for splicing other chloroplast group II introns in the cp

genome [55]. Thus the retaining of matK in C. deserticola is not

surprising because its cp genome has retained 9 group IIa introns

(including rpl2, rpl16, rps12, clpP, trnA-UGC, trnI-GAU, trnK-

UUU, trnG-UCC, trnV-UAC). While the trnK gene exists in the C.

deserticola cp genome, which was similar to photosynthetic plants,

this may suggest the plant has undergone fewer losses, either due

to a function of reduced level of holoparasitism, or a recent switch

to this life history [56].

The entire set of chloroplast NAD (P) H dehydrogenase

consisting of 11 genes has been lost or turned into pseudogenes

without exception in C. deserticola. What is interesting is that a loss

of ndh genes was also present in all sequenced cp genomes of

parasitic plants investigated to date, regardless of the degree of

evolutionary degradation of photosynthetic capacity (Table 1). It

was confirmed that cp-encoded ndh genes were first lost in the

transition to heterotrophy [7,57]. It has been speculated that the

condensation of the genome by loss of many non-coding regions

and unimportant parts of the cp genome is an early reaction of the

cp genome to the parasitic lifestyle [6].

After calculating dN/dS for shared cp genes between E.

virginiana, C. deserticola and two photosynthetic species, an obvious

trend of relaxed selection was revealed in both fully nonphotosyn-

thetic species with higher dN/dS. It may indicate that these genes

were suffering an initial stage of pseudogenization. However, C.

deserticola has lower dN/dS for more genes than E. virginiana, which

suffered a high degree of gene loss and pseudogenization, further

indicating C. deserticola may undergo reduced level of holoparasit-

ism or a recent switch to this life history. The gene psbM, which

was the only one photosynthetic gene retained in C. deserticola,

showed a higher dN/dS than in photosynthetic species (dN/dS = 0),

suggesting advent of relaxed selection and initial stage of

pseudogenization in this gene in C. deserticola. However, some

unexpected high dN/dS were also found in rpl33, rps7 and rpl22 in

photosynthetic species. The short length of sequences may reduce

the reliability of dN/dS estimation in these genes [58].

HGT from H. ammodendron to C. deserticola
HGT in parasitic systems has been detected by using

phylogenetic trees when a DNA sequence obtained from a

parasite is placed closer to its host rather than with its closest

relatives. Unexpectedly we had a windfall in the process of

amplifying the cp genome sequence of C. deserticola. One of these

sequences, rpoC2 gene, was present in two copies within this

parasite and one of them was a homolog of their host and led to

conflicting phylogenies. The most reasonable explanation for our

results is that cp rpoC2 gene in C. deserticola was acquired from its

host, H. ammodendron via HGT. In order to confirm the results and

provide special opportunities for studying the evolutionary

dynamics of HGT at the population level, we also collected 50

samples from five populations and successfully amplified trans-

ferred the rpoC2 gene from 46 accessions. In addition, the events

present in most individuals spanning Xinjiang and Inner

Mongolia, may suggest that the HGT of rpoC2 probably occurred

in a C. deserticola common ancestor of these populations, which

expanded into its present wide distribution quickly.

So far, the incidence of HGT in the family Orobanchaceae is

high, including one nuclear HGT event which occurred between

parasitic Striga hermonthica (Orobanchaceae) and its host Sorghum

bicolor (Poaceae), as well as a chloroplast region including rps2, trnL-

F, and rbcL in a group of non-photosynthetic members (Orobanche

and Phelipanche) of Orobanchaceae [29,59]. Our study shows that

cp rpoC2 has transferred from H. ammodendron to C. deserticola via

HGT. However, it is impossible to presume the localization of the

transferred rpoC2 based on the available data. We just could rule

out its location in the cp genome according to our completed cp

genome of C. deserticola. This agrees with the reports that events of

foreign DNA transferred into the cp genome are rare [60,61]. The

possibility of disparity between plant mitochondrial and nuclear

genomes vs. cp genomes in rates of HGT is that the mitochon-

drion and nuclear genomes contain much more non-coding DNA

than compact cp genomes [62,63].

As desert plants, H. ammodendron and C. deserticola have developed

an extremely specialized set of morphological, biochemical and

molecular traits to adapt scare nutrients and water in the soil, such

as loss of leaves and the development of haustoria in C. deserticola.

With this feeding organ, C. deserticola can extract water and

nutrients from the parasitized host, including the nucleic acids in

the form of mRNA. It is why HGT appears to be facilitated by the

direct physical association between the parasite and its host in the

parasitic systems.Moreover, C. deserticola is a typical root parasite,

meaning they are usually in contact with its host through

meristems. In plants, meristems are less protected than the

germlines in most multicellular animals [22]. Therefore, the genes,

which transferred to the root apical meristem, could have the

opportunity to be integrated in the genome and transmitted to the

next generation.

In our study, either the transferred rpoC2 or its native copy

appear to be non-functional pseudogenes in C. deserticola. Previous

work has reported plant mtDNA pseudogenes that are transcribed

and edited, so this raises the possibility that some of these genes

may actually be functional [64,65]. The fact is that acquiring a

new gene can lead to an obvious benefit to living in that particular

environment. H. ammodendron, which is distributed across dry

deserts and salt pans, has high tolerance to osmotic and salt stress

[66]. We postulate that C. deserticola could not only obtain the

carbohydrate, minerals and water, but also the straightforward

source of useful genetic information from the neighbour already

adapted to that environment. In the ‘genomic era’, future work is

still needed to discover more HGT events in this pair of host and

parasite by next generation sequencing, especially genes in

mitochondrial and nuclear genomes.
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