333 research outputs found
When a small self means manageable obstacles: Spontaneous self-distancing predicts divergent effects of awe during a subsequent performance stressor
The emotion of awe occurs when one feels small relative to something vaster than the self; it leads to benefits such as care for others. However, because awe elicits the experience of a “small self,” it is unclear to what extent awe positively versus negatively affects responses to subsequent stressors. If personal obstacles seem trivial in comparison to awe-inspiring stimuli, stressors should seem either manageable or unimportant, but if one's capabilities seem comparatively insignificant, stressors should seem unmanageable. We hypothesized that awe would have a generally positive effect on responses during a subsequent performance stressor, but that this would further depend on whether people tended to spontaneously take on a self-distanced versus self-immersed perspective. In the face of awe, focusing less on the self (self-distanced perspective) should make obstacles in particular seem trivial, whereas focusing more on the self (self-immersed) should lead one's capabilities to seem insignificant. Using the biopsychosocial model of challenge/threat, we found that spontaneous self-distancing significantly moderated awe's effects on responses during a subsequent performance stressor (speech task): For participants who self-distanced, the awe condition led to cardiovascular responses consistent with greater challenge than the neutral control condition (reflecting evaluating the stressor as more manageable); for participants who self-immersed, awe predicted relative threat (less manageable stressor). There was no support for awe making people care less about the stressor (as reflected in cardiovascular responses consistent with task engagement). This offers insight into how awe can have divergent effects on people's experiences during performance stressors
Four Generations: SUSY and SUSY Breaking
We revisit four generations within the context of supersymmetry. We compute
the perturbativity limits for the fourth generation Yukawa couplings and show
that if the masses of the fourth generation lie within reasonable limits of
their present experimental lower bounds, it is possible to have perturbativity
only up to scales around 1000 TeV. Such low scales are ideally suited to
incorporate gauge mediated supersymmetry breaking, where the mediation scale
can be as low as 10-20 TeV. The minimal messenger model, however, is highly
constrained. While lack of electroweak symmetry breaking rules out a large part
of the parameter space, a small region exists, where the fourth generation stau
is tachyonic. General gauge mediation with its broader set of boundary
conditions is better suited to accommodate the fourth generation.Comment: 27 pages, 5 figure
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Considering Usual Medical Care in Clinical Trial Design
Liza Dawson and colleagues discuss the scientific and ethical issues associated with choosing clinical trial designs when there is no consensus on what constitutes usual care
Quantum Algorithms for the Approximate <i>k</i>-List Problem and their Application to Lattice Sieving
The Shortest Vector Problem (SVP) is one of the mathematical foundations of lattice based cryptography. Lattice sieve algorithms are amongst the foremost methods of solving SVP. The asymptotically fastest known classical and quantum sieves solve SVP in a -dimensional lattice in 2^{\const d + \smallo(d)} time steps with 2^{\const' d + \smallo(d)} memory for constants . In this work, we give various quantum sieving algorithms that trade computational steps for memory.We first give a quantum analogue of the classical -Sieve algorithm [Herold--Kirshanova--Laarhoven, PKC'18] in the Quantum Random Access Memory (QRAM) model, achieving an algorithm that heuristically solves SVP in time steps using memory. This should be compared to the state-of-the-art algorithm [Laarhoven, Ph.D Thesis, 2015] which, in the same model, solves SVP in time steps and memory. In the QRAM model these algorithms can be implemented using \poly(d) width quantum circuits.Secondly, we frame the -Sieve as the problem of -clique listing in a graph and apply quantum -clique finding techniques to the -Sieve. Finally, we explore the large quantum memory regime by adapting parallel quantum search [Beals et al., Proc. Roy. Soc. A'13] to the -Sieve and giving an analysis in the quantum circuit model. We show how to heuristically solve SVP in time steps using quantum memory
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
X-ray emission from the Sombrero galaxy: discrete sources
We present a study of discrete X-ray sources in and around the
bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival
Chandra observations with a total exposure of ~200 ks. With a detection limit
of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30
kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler
et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS
observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray
binaries (LMXBs). We quantify the differential luminosity functions (LFs) for
both the detected GC and field LMXBs, whose power-low indices (~1.1 for the
GC-LF and ~1.6 for field-LF) are consistent with previous studies for
elliptical galaxies. With precise sky positions of the GCs without a detected
X-ray source, we further quantify, through a fluctuation analysis, the GC LF at
fainter luminosities down to 1E35 erg/s. The derived index rules out a
faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent
findings in several elliptical galaxies and the bulge of M31. On the other
hand, the 2-6 keV unresolved emission places a tight constraint on the field
LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101
sources in the halo of Sombrero. The presence of these sources cannot be
interpreted as galactic LMXBs whose spatial distribution empirically follows
the starlight. Their number is also higher than the expected number of cosmic
AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray
surveys. We suggest that either the cosmic X-ray background is unusually high
in the direction of Sombrero, or a distinct population of X-ray sources is
present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Big issues for small feet : developmental, biomechanical and clinical narratives on children's footwear
The effects of footwear on the development of children's feet has been debated for many years and recent work from the developmental and biomechanical literature has challenged long-held views about footwear and the impact on foot development. This narrative review draws upon existing studies from developmental, biomechanical and clinical literature to explore the effects of footwear on the development of the foot. The emerging findings from this support the need for progress in [children's] footwear science and advance understanding of the interaction between the foot and shoe. Ensuring clear and credible messages inform practice requires a progressive evidence base but this remains big issue in children's footwear research
- …