Quantum Algorithms for the Approximate k-List Problem and their Application to Lattice Sieving*

Elena Kirshanova ${ }^{1}$, Erik Mårtensson ${ }^{2}$, Eamonn W. Postlethwaite ${ }^{3}$, and Subhayan Roy Moulik ${ }^{4}$
${ }^{1}$ I. Kant Baltic Federal University, Kaliningrad, Russia. elenakirshanova@gmail.com
${ }^{2}$ Department of Electrical and Information Technology, Lund University, Sweden. erik.martensson@eit.lth.se
${ }^{3}$ Information Security Group, Royal Holloway, University of London. eamonn.postlethwaite.2016@rhul.ac.uk
${ }^{4}$ Department of Computer Science, University of Oxford, Oxford, UK. subhayan.roy.moulik@cs.ox.ac.uk

Abstract

The Shortest Vector Problem (SVP) is one of the mathematical foundations of lattice based cryptography. Lattice sieve algorithms are amongst the foremost methods of solving SVP. The asymptotically fastest known classical and quantum sieves solve SVP in a d-dimensional lattice in $2^{c d+o(d)}$ time steps with $2^{c^{\prime} d+o(d)}$ memory for constants c, c^{\prime}. In this work, we give various quantum sieving algorithms that trade computational steps for memory. We first give a quantum analogue of the classical k-Sieve algorithm [Herold-Kirshanova-Laarhoven, PKC'18] in the Quantum Random Access Memory (QRAM) model, achieving an algorithm that heuristically solves SVP in $2^{0.2989 d+o(d)}$ time steps using $2^{0.1395 d+o(d)}$ memory. This should be compared to the state-of-the-art algorithm [Laarhoven, Ph.D Thesis, 2015] which, in the same model, solves SVP in $2^{0.2653 d+o(d)}$ time steps and memory. In the QRAM model these algorithms can be implemented using poly (d) width quantum circuits. Secondly, we frame the k-Sieve as the problem of k-clique listing in a graph and apply quantum k-clique finding techniques to the k-Sieve. Finally, we explore the large quantum memory regime by adapting parallel quantum search [Beals et al., Proc. Roy. Soc. A'13] to the 2-Sieve, and give an analysis in the quantum circuit model. We show how to solve SVP in $2^{0.1037 d+o(d)}$ time steps using $2^{0.2075 d+o(d)}$ quantum memory.

1 Introduction

The Shortest Vector Problem (SVP) is one of the central problems in the theory of lattices. For a given d-dimensional Euclidean lattice, usually described by a basis, to solve SVP one must find a shortest non zero vector in the lattice. This

[^0]problem gives rise to a variety of efficient, versatile, and (believed to be) quantum resistant cryptographic constructions AD97Reg05. To obtain an estimate for the security of these constructions it is important to understand the complexities of the fastest known algorithms for SVP.

There are two main families of algorithms for SVP, (1) algorithms that require $2^{\omega(d)}$ time and poly (d) memory; and (2) algorithms that require $2^{\Theta(d)}$ time and memory. The first family includes lattice enumeration algorithms Kan83 GNR10. The second contains sieving algorithms AKS01|NV08|MV10, Voronoi cell based approaches MV10 and others ADRSD15BGJ14. In practice, it is only enumeration and sieving algorithms that are currently competitive in large dimensions $\mathrm{ADH}^{+} 19 \mathrm{TKH18}$. Practical variants of these algorithms rely on heuristic assumptions. For example we may not have a guarantee that the returned vector will solve SVP exactly (e.g. pruning techniques for enumeration GNR10, lifting techniques for sieving (Duc18]), or that our algorithm will work as expected on arbitrary lattices (e.g. sieving algorithms may fail on orthogonal lattices). Yet these heuristics are natural for lattices often used in cryptographic constructions, and one does not require an exact solution to SVP to progress with cryptanalysis $\mathrm{ADH}^{+} 19$. Therefore, one usually relies on heuristic variants of SVP solvers for security estimates.

Among the various attractive features of lattice based cryptography is its potential resistance to attacks by quantum computers. In particular, there is no known quantum algorithm that solves SVP on an arbitrary lattice significantly faster than existing classical algorithms ${ }^{1}$ However, some quantum speed-ups for SVP algorithms are possible in general.

It was shown by Aono-Nguyen-Shen ANS18 that enumeration algorithms for SVP can be sped up using the quantum backtracking algorithm of Montanaro Mon18. More precisely, with quantum enumeration one solves SVP on a d-dimensional lattice in time $2^{\frac{1}{4 e} d \log d+o(d \log d)}$, a square root improvement over classical enumeration. This algorithm requires poly (d) classical and quantum memory. This bound holds for both provable and heuristic versions of enumeration. Quantum speed-ups for sieving algorithms have been considered by Laarhoven-Mosca-van de Pol LMvdP15 and later by Laarhoven Laa15. The latter result presents various quantum sieving algorithms for SVP. One of them achieves time and classical memory of order $2^{0.2653 d+o(d)}$ and requires poly (d) quantum memory. This is the best known quantum time complexity for heuristic sieving algorithms. Provable single exponential SVP solvers were considered in the quantum setting by Chen-Chang-Lai CCL17. Based on ADRSD15DRS14, the authors describe a $2^{1.255 d+o(d)}$ time, $2^{0.5 d+o(d)}$ classical and poly (d) quantum memory algorithm for SVP. All heuristic and provable results rely on the classical memory being quantumly addressable.

A drawback of sieving algorithms is their large memory requirements. Initiated by Bai-Laarhoven-Stehlé, a line of work BLS16HK17HKL18] gave a

[^1]family of heuristic sieving algorithms, called tuple lattice sieves, or k-Sieves for some fixed constant k, that offer time-memory trade-offs. Such trade-offs have proven important in the current fastest SVP solvers, as the ideas of tuple sieving offer significant speed-ups in practice, $\mathrm{ADH}^{+} 19$. In this work, we explore various directions for asymptotic quantum accelerations of tuple sieves.

Our results.

1. In Section 4 we show how to use a quantum computer to speed up the k Sieve of Bai-Laarhoven-Stehlé [BLS16] and its improvement due to Herold-Kirshanova-Laarhoven HKL18 (Algorithms 4.14.2). One data point achieves a time complexity of $2^{0.2989 d+o(d)}$, while requiring $2^{0.1395 d+o(d)}$ classical memory and poly (d) width quantum circuits. In the Area \times Time model this beats the previously best known algorithm Laa15 of time and memory complexities $2^{0.2653 d+o(d)}$; we almost halve the constant in the exponent for memory at the cost of a small increase in the respective constant for time.
2. Borrowing ideas from Laa15 in the full version KMPR19, App. B] we give a quantum k-Sieve that exploits nearest neighbour techniques. For $k=2$, we recover Laarhoven's $2^{0.2653 d+o(d)}$ time and memory quantum algorithm.
3. In Section 5 the k-Sieve is reduced to listing k-cliques in a graph. By generalising the triangle finding algorithm of $\mathrm{BdWD}^{+} 01$ this approach leads to an algorithm that matches the performance of Algorithm 4.1. when optimised for memory, for all k.
4. In Section 6 we specialise to listing 3-cliques (triangles) in a graph. Using the quantum triangle finding algorithm of LGN17 allows us, in the query model $]^{2}$ to perform the 3-Sieve using $2^{0.3264 d+o(d)}$ queries.
5. In Section 7 we describe a quantum circuit consisting only of gates from a universal gate set (e.g. CNOT and single qubit rotations) of depth $2^{0.1038 d+o(d)}$ and width $2^{0.2075 d+o(d)}$ that implements the 2 -Sieve as proposed classically in NV08. In particular we consider exponential quantum memory to make significant improvements to the number of time steps. Our construction adapts the parallel search procedure of $\left[\mathrm{BBG}^{+13}\right]$.

All the results presented in this work are asymptotic in nature: our algorithms have time, classical memory, quantum memory complexities of orders $2^{\text {cd+o(d) }}$, $2^{\mathrm{c}^{\prime} d+o(d)}$, $\operatorname{poly}(d)$ or $2^{\mathrm{c}^{\prime \prime} d+o(d)}$ respectively, for $\mathrm{c}, \mathrm{c}^{\prime}, \mathrm{c}^{\prime \prime} \in \Theta(1)$, which we aim to minimise. We do not attempt to specify the $o(d)$ or poly (d) terms.

Our techniques. We now briefly describe the main ingredients of our results.

1. A useful abstraction of the k-Sieve is the configuration problem, first described in HK17. It consists of finding k elements that satisfy certain pairwise inner product constraints from k exponentially large lists of vectors. Assuming $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)$ is a solution tuple, the $i^{\text {th }}$ element \mathbf{x}_{i} can be obtained via a brute force search either over the $i^{\text {th }}$ input list [BLS16], or over

[^2]a certain sublist of the $i^{\text {th }}$ list HK17, see Figure 1b. We replace the brute force searches with calls to Grover's algorithm and reanalyse the configuration problem. The search for \mathbf{x}_{i} within such a data structure can itself be sped up by Grover's algorithm.
2. The configuration problem can be reduced to the k-clique problem in a graph with vertices representing elements from the lists given by the configuration problem. Vertices are connected by an edge if and only if the corresponding list elements satisfy some inner product constraint. Classically, this interpretation yields no improvements to configuration problem algorithms. However we achieve quantum speed-ups by generalising the triangle finding algorithm of Buhrman et al. [BdWD ${ }^{+} 01$ and applying it to k-cliques.
3. We apply the triangle finding algorithm of Le Gall-Nakajima [LGN17] and exploit the structure of our graph instance. In particular we form many graphs from unions of sublists of our lists, allowing us to alter the sparsity of said graphs.
4. To make use of more quantum memory we run Grover searches in parallel. The idea is to allow simultaneous queries by several processors to a large, shared, quantum memory. Instead of looking for a "good" \mathbf{x}_{i} for one fixed tuple ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{i-1}$), one could think of parallel searches aiming to find a "good" \mathbf{x}_{i} for several tuples $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}\right)$. The possibility of running several Grover's algorithms concurrently was shown in the work of Beals et al. $\mathrm{BBG}^{+} 13$. Based on this result we specify all the subroutines needed to solve the shortest vector problem using large quantum memory.

2 Preliminaries

We denote by $\mathrm{S}^{d} \subset \mathbb{R}^{d+1}$ the d-dimensional unit sphere. We use soft- \mathcal{O} notation to denote running times, that is $T=\widetilde{\mathcal{O}}\left(2^{\text {dd }}\right)$ suppresses subexponential factors in d. By $[n]$ we denote the set $\{1, \ldots, n\}$. The norm considered in this work is Euclidean and is denoted by $\|\cdot\|$.

For any set $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ of vectors in \mathbb{R}^{d}, the Gram matrix $C \in \mathbb{R}^{k \times k}$ is given by $C_{i, j}=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle$, the set of pairwise scalar products. For $I \subset[k]$, we denote by $C[I]$ the $|I| \times|I|$ submatrix of C obtained by restricting C to the rows and columns indexed by I. For a vector \mathbf{x} and $i \in[k], \mathbf{x}[i]$ denotes the $i^{\text {th }}$ entry. For a function f, by O_{f} we denote a unitary matrix that implements f.

Lattices. Given a basis $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right\} \subset \mathbb{R}^{d}$ of linearly independent vectors \mathbf{b}_{i}, the lattice generated by B is defined as $\mathcal{L}(B)=\left\{\sum_{i=1}^{m} z_{i} \mathbf{b}_{i}: z_{i} \in \mathbb{Z}\right\}$. For simplicity we work with lattices of full rank $(d=m)$. The Shortest Vector Problem (SVP) is to find, for a given B, a shortest non zero vector of $\mathcal{L}(B)$. Minkowski's theorem for the Euclidean norm states that a shortest vector of $\mathcal{L}(B)$ is bounded from above by $\sqrt{d} \cdot \operatorname{det}(B)^{1 / d}$.

Quantum Search. Our results rely on Grover's quantum search algorithm Gro96 which finds "good" elements in a (large) list. The analysis of the success probability of this algorithm can be found in BBHT98. We also rely on the generalisation
of Grover's algorithm, called Amplitude Amplification, due to Brassard-Høyer-Mosca-Tapp BHMT02] and a result on parallel quantum search $\mathrm{BBG}^{+} 13$.

Theorem 1 (Grover's algorithm [Gro96BBHT98]). Given quantum access to a list L that contains t "good" elements (the value t is not necessarily known) and a function $f: L \rightarrow\{0,1\}$, described by a unitary O_{f}, which determines whether an element is "good" or not, we wish to find a solution $i \in[|L|]$, such that for $f\left(x_{i}\right)=1, x_{i} \in L$. There exists a quantum algorithm, called Grover's algorithm, that with probability greater than $1-t /|L|$ outputs one "good" element using $\mathcal{O}(\sqrt{|L| / t})$ calls to O_{f}.

Theorem 2 (Amplitude Amplification [BHMT02, Theorem 2]). Let \mathcal{A} be any quantum algorithm that makes no measurements and let $\mathcal{A}|0\rangle=\left|\Psi_{0}\right\rangle+$ $\left|\Psi_{1}\right\rangle$, where $\left|\Psi_{0}\right\rangle$ and $\left|\Psi_{1}\right\rangle$ are spanned by "bad" and "good" states respectively. Let further $a=\left\langle\Psi_{1} \mid \Psi_{1}\right\rangle$ be the success probability of \mathcal{A}. Given access to a function f that flips the sign of the amplitudes of good states, i.e. $f:|x\rangle \mapsto-|x\rangle$ for "good" $|x\rangle$ and leaves the amplitudes of "bad" $|x\rangle$ unchanged, the amplitude amplification algorithm constructs the unitary $Q=-\mathcal{A R} \mathcal{A}^{-1} O_{f}$, where R is the reflection about $|0\rangle$, and applies Q^{m} to the state $\mathcal{A}|0\rangle$, where $m=\left\lfloor\frac{\pi}{4} \arcsin (\sqrt{a})\right\rfloor$. Upon measurement of the system, a "good" state is obtained with probability at least $\max \{a, 1-a\}$.

Theorem 3 (Quantum Parallel Search $\left[\mathbf{B B G}^{+} \mathbf{1 3}\right]$). Given a list L, with each element of bit length d, and $|L|$ functions that take list elements as input $f_{i}: L \rightarrow\{0,1\}$ for $i \in[|L|]$, we wish to find solution vectors $\mathbf{s} \in[|L|]^{|L|}$. A solution has $f_{i}\left(\mathbf{x}_{\mathbf{s}[i]}\right)=1$ for all $i \in[|L|]$. Given unitaries $U_{f_{i}}:|\mathbf{x}\rangle|b\rangle \rightarrow$ $|\mathbf{x}\rangle\left|b \oplus f_{i}(\mathbf{x})\right\rangle$ there exists a quantum algorithm that, for each $i \in[|L|]$, either returns a solution $\mathbf{s}[i]$ or if there is no such solution, returns no solution. The algorithm succeeds with probability $\Theta(1)$ and, given that each $U_{f_{i}}$ has depth and width poly $\log (|L|, d)$, can be implemented using a quantum circuit of width $\widetilde{\mathcal{O}}(|L|)$ and depth $\widetilde{\mathcal{O}}(\sqrt{|L|})$.

Computational Models. Our algorithms are analysed in the quantum circuit model KLM07. We set each wire to represent a qubit, i.e. a vector in a two dimensional complex Hilbert space, and assert that we have a set of universal gates. We work in the noiseless quantum theory, i.e. we assume there is no (or negligible) decoherence or other sources of noise in the computational procedures.

The algorithms given in Sections 4 and 5 are in the QRAM model and assume quantumly accessible classical memory GLM08. More concretely in this model we store all data, e.g. the list of vectors, in classical memory and only demand that this memory is quantumly accessible, i.e. elements in the list can be efficiently accessed in coherent superposition. This enables us to design algorithms that, in principle, do not require large quantum memories and can be implemented with only poly (d) qubits and with the $2^{\Theta(d)}$ sized list stored in classical memory. Several works BHT97 Kup13] suggest that this memory model is potentially easier to achieve than a full quantum memory.

In Section 6 we study the algorithms in the query model, which is the typical model for quantum triangle or k-clique finding algorithms. Namely, the complexity of our algorithm is measured in the number of oracle calls to the adjacency matrix of a graph associated to a list of vectors.

Acknowledging the arguments against the feasibility of QRAM and whether it can be meaningfully cheaper than quantum memory [AGJO ${ }^{+} 15$] we also consider, Section 7, algorithms that use exponential quantum memory in the quantum circuit model without assuming QRAM.

3 Sieving as Configuration Search

In this section we describe previously known classical sieving algorithms. We will not go into detail or give proofs, which can be found in the relevant references.

Sieving algorithms receive on input a basis $B \in \mathbb{R}^{d \times d}$ and start by sampling an exponentially large list L of (long) lattice vectors from $\mathcal{L}(B)$. There are efficient algorithms for sampling lattice vectors, e.g. Kle00. The elements of L are then iteratively combined to form shorter lattice vectors, $\mathbf{x}_{\text {new }}=\mathbf{x}_{1} \pm \mathbf{x}_{2} \pm \ldots \pm \mathbf{x}_{k}$ such that $\left\|\mathbf{x}_{\text {new }}\right\| \leq \max _{i \leq k}\left\{\left\|\mathbf{x}_{i}\right\|\right\}$, for some $k \geq 2$. Newly obtained vectors $\mathbf{x}_{\text {new }}$ are stored in a new list and the process is repeated with this new list of shorter vectors. It can be shown NV08 Reg09 that after poly (d) such iterations we obtain a list that contains a shortest vector. Therefore, the asymptotic complexity of sieving is determined by the cost of finding k-tuples whose combination produces shorter vectors. Under certain heuristics, specified below, finding such k-tuples can be formulated as the approximate k-List problem.

Definition 1 (Approximate k-List problem). Assume we are given k lists L_{1}, \ldots, L_{k} of equal exponential (in d) size $|L|$ and whose elements are i.i.d. uniformly chosen vectors from S^{d-1}. The approximate k-List problem is to find $|L|$ solutions, where a solution is a k-tuple $\left(x_{1}, \ldots, x_{k}\right) \in L_{1} \times \ldots \times L_{k}$ satisfying $\left\|\mathrm{x}_{1}+\ldots+\mathrm{x}_{k}\right\| \leq 1$.

The assumption made in analyses of heuristic sieving algorithms NV08 is that the lattice vectors in the new list after an iteration are thought of as i.i.d. uniform vectors on a thin spherical shell (essentially, a sphere), and, once normalised, on S^{d-1}. Hence sieves do not "see" the discrete structure of the lattice from the vectors operated on. The heuristic becomes invalid when the vectors become short. In this case we assume we have solved SVP. Thus, we may not find a shortest vector, but an approximation to it, which is enough for most cryptanalytic purposes.

We consider k to be constant. The lists L_{1}, \ldots, L_{k} in Definition 1 may be identical. The algorithms described below are applicable to this case as well. Furthermore, the approximate k-List problem only looks for solutions with + signs, i.e. $\left\|\mathbf{x}_{1}+\ldots+\mathbf{x}_{k}\right\| \leq 1$, while sieving looks for arbitrary signs. This is not an issue, as we may repeat an algorithm for the approximate k-List problem $2^{k}=\mathcal{O}(1)$ times in order to obtain all solutions.

Configuration Search. Using a concentration result on the distribution of scalar products of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \in \mathrm{~S}^{d-1}$ shown in HK17, the approximate k-List problem can be reduced to the configuration problem. In order to state this problem, we need a notion of configurations.
Definition 2 (Configuration). The configuration $C=\operatorname{Conf}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)$ of k points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \in \mathrm{~S}^{d-1}$ is the Gram matrix of the \mathbf{x}_{i}, i.e. $C_{i, j}=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle$.

A configuration $C \in \mathbb{R}^{k \times k}$ is a positive semidefinite matrix. Rewriting the solution condition $\left\|\mathrm{x}_{1}+\ldots+\mathrm{x}_{k}\right\|^{2} \leq 1$, one can check that a configuration C for a solution tuple satisfies $\mathbf{1}^{\mathrm{t}} C \mathbf{1} \leq 1$. We denote the set of such "good" configurations by

$$
\mathscr{C}=\left\{C \in \mathbb{R}^{k \times k}: C \text { is positive semidefinite and } \mathbf{1}^{\mathrm{t}} C \mathbf{1} \leq 1\right\}
$$

It has been shown HK17 that rather than looking for k-tuples that form a solution for the approximate k-List problem, we may look for k-tuples that satisfy a constraint on their configuration. It gives rise to the following problem.

Definition 3 (Configuration problem). Let $k \in \mathbb{N}$ and $\varepsilon>0$. Suppose we are given a target configuration $C \in \mathscr{C}$. Given k lists L_{1}, \ldots, L_{k} all of exponential (in d) size $|L|$, whose elements are i.i.d. uniform from S^{d-1}, the configuration problem consists of finding a $1-o(1)$ fraction of all solutions, where a solution is a k-tuple $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)$ with $\mathbf{x}_{i} \in L_{i}$ such that $\left|\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle-C_{i, j}\right| \leq \varepsilon$ for all i, j.

Solving the configuration problem for a $C \in \mathscr{C}$ gives solutions to the approximate k-List problem. For a given $C \in \mathbb{R}^{k \times k}$ the number of expected solutions to the configuration problem is given by $\operatorname{det}(C)$ as the following theorem shows.

Theorem 4 (Distribution of configurations [HK17, Theorem 1]). If $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ are i.i.d. from $\mathrm{S}^{d-1}, d>k$, then their configuration $C=\operatorname{Conf}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)$ follows a distribution with density function

$$
\begin{equation*}
\mu=W_{d, k} \cdot \operatorname{det}(C)^{\frac{1}{2}(d-k)} \mathrm{d} C_{1,2} \ldots \mathrm{~d} C_{d-1, d} \tag{1}
\end{equation*}
$$

where $W_{d, k}=\mathcal{O}_{k}\left(d^{\frac{1}{4}\left(k^{2}-k\right)}\right)$ is an explicitly known normalisation constant that only depends on d and k.

This theorem tells us that the expected number of solutions to the configuration problem for C is given by $\prod_{i}\left|L_{i}\right| \cdot(\operatorname{det} C)^{d / 2}$. If we want to apply an algorithm for the configuration problem to the approximate k-List problem (and to sieving), we require that the expected number of output solutions to the configuration problem is equal to the size of the input lists. Namely, C and the input lists L_{i} of size $|L|$ should (up to polynomial factors) satisfy $|L|^{k} \cdot(\operatorname{det} C)^{d / 2}=|L|$. This condition gives a lower bound on the size of the input lists. Using Chernoff bounds, one can show (see HKL18, Lemma 2]) that increasing this bound by a poly (d) factor gives a sufficient condition for the size of input lists, namely

$$
\begin{equation*}
|L|=\widetilde{\mathcal{O}}\left(\left(\frac{1}{\operatorname{det}(C)}\right)^{\frac{d}{2(k-1)}}\right) \tag{2}
\end{equation*}
$$

Classical algorithms for the configuration problem. The first classical algorithm for the configuration problem for $k \geq 2$ was given by Bai-Laarhoven-Stehlé BLS16. It was later improved by Herold--Kirshanova HK17] and by Herold-KirshanovaLaarhoven HKL18 (Figure 1b). These results present a family of algorithms for the configuration problem that offer time-memory trade-offs. In Section 4 we present quantum versions of these algorithms.

Both algorithms BLS16HKL18 process the lists from left to right but in a different manner. For each $\mathbf{x}_{1} \in L_{1}$ the algorithm from BLS16] applies a filtering procedure to L_{2} and creates the "filtered" list $L_{2}\left(\mathbf{x}_{1}\right)$. This filtering procedure takes as input an element $\mathbf{x}_{2} \in L_{2}$ and adds it to $L_{2}\left(\mathbf{x}_{1}\right)$ iff $\left|\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle-C_{1,2}\right| \leq$ ε. Having constructed the list $L_{2}\left(\mathbf{x}_{1}\right)$, the algorithm then iterates over it: for each $\mathbf{x}_{2} \in L_{2}\left(\mathbf{x}_{1}\right)$ it applies the filtering procedure to L_{3} with respect to $C_{2,3}$ and obtains $L_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$. Throughout, vectors in brackets indicate fixed elements with respect to which the list has been filtered. Filtering of the top level lists $\left(L_{1}, \ldots, L_{k}\right)$ continues in this fashion until we have constructed $L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}\right)$ for fixed values $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}$. The tuples of the form $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}, \mathbf{x}_{k}\right)$ for all $\mathbf{x}_{k} \in L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}\right)$ form solutions to the configuration problem.

The algorithms from HK17HKL18 apply more filtering steps. For a fixed $\mathbf{x}_{1} \in L_{1}$, they not only create $L_{2}\left(\mathbf{x}_{1}\right)$, but also $L_{3}\left(\mathbf{x}_{1}\right), \ldots, L_{k}\left(\mathbf{x}_{1}\right)$. This speeds up the next iteration over all $\mathbf{x}_{2} \in L_{2}\left(\mathbf{x}_{1}\right)$, where now the filtering step with respect to $C_{2,3}$ is applied not to L_{3}, but to $L_{3}\left(\mathbf{x}_{1}\right)$, as well as to $L_{4}\left(\mathbf{x}_{1}\right), \ldots, L_{k}\left(\mathbf{x}_{1}\right)$, each of which is smaller than L_{i}. This speeds up the construction of $L_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$. The algorithm continues with this filtering process until the last inner product check with respect to $C_{k-1, k}$ is applied to all the elements from $L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)$ and the list $L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}\right)$ is constructed. This gives solutions of the form $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}, \mathbf{x}_{k}\right)$ for all $\mathbf{x}_{k} \in L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}\right)$. The concentration result, Theorem 4 implies the outputs of algorithms from [BLS16] and HK17HKL18] are (up to a subexponential fraction) the same. Pseudocode for HK17 can be found in the full version KMPR19, App. A].

Important for our analysis in Section 4 will be the the result of HKL18 that describes the sizes of all the intermediate lists that appear during the configuration search algorithms via the determinants of submatrices of the target configuration C. The next theorem gives the expected sizes of these lists and the time complexity of the algorithm from HKL18.
Theorem 5 (Intermediate list sizes [HKL18, Lemma 1] and time complexity of configuration search algorithm). During a run of the configuration search algorithms described in Figures 1a, 1b, given an input configuration $C \in \mathbb{R}^{k \times k}$ and lists $L_{1}, \ldots, L_{k} \subset \mathrm{~S}^{d-1}$ each of size $|L|$, the intermediate lists for $1 \leq i<j \leq k$ are of expected sizes

$$
\begin{equation*}
\mathbb{E}\left[\left|L_{j}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}\right)\right|\right]=|L| \cdot\left(\frac{\operatorname{det}(C[1, \ldots, i, j])}{\operatorname{det}(C[1 \ldots i])}\right)^{d / 2} \tag{3}
\end{equation*}
$$

The expected running time of the algorithm described in Figure $1 b$ is

$$
\begin{equation*}
T_{\mathrm{k}-\mathrm{Conf}}^{\mathrm{C}}=\max _{1 \leq i \leq k}\left[\prod_{r=1}^{i}\left|L_{r}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{r-1}\right)\right| \cdot \max _{i+1 \leq j \leq k}\left|L_{j}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}\right)\right|\right] \tag{4}
\end{equation*}
$$

Finding a configuration for optimal runtime. For a given i the square bracketed term in Eq. (4) represents the expected time required to create all filtered lists on a given "level". Here "level" refers to all lists filtered with respect to the same fixed $\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}$, i.e. a row of lists in Figure 1b, In order to find an optimal configuration C that minimises Eq. (4), we perform numerical optimisations using the Maple ${ }^{T M}$ package Map ${ }^{3}$ In particular, we search for $C \in \mathscr{C}$ that minimises Eq. (4) under the condition that Eq. (2) is satisfied (so that we actually obtain enough solutions for the k-List problem). Figures for the optimal runtime and the corresponding memory are given in Table 1. The memory is determined by the size of the input lists computed from the optimal C using Eq. (2). Since the k-List routine determines the asymptotic cost of k-Sieve, the figures in Table 1 are also the constants in the exponents for complexities of k-Sieves.

k	2	3	4	5	6	\ldots	16	17	18
Time	0.4150	0.3789	0.3702	0.3707	0.3716		0.3728	0.37281	0.37281
Space	0.2075	0.1895	0.1851	0.1853	0.1858		0.1864	0.18640	0.18640

Table 1: Asymptotic complexity exponents for the approximate k-List problem, base 2 . The table gives optimised runtime and the corresponding memory exponents for the classical algorithm from [HKL18, see Figure 1b.

Interestingly, the optimal runtime constant turns out to be equal for large enough k. This can be explained as follows. The optimal C achieves the situation where all the expressions in the outer max in Eq. (4) are equal. This implies that creating all the filtered lists on level i asymptotically costs the same as creating all the filtered lists on level $i+1$ for $2 \leq i \leq k-1$. The cost of creating filtered lists $L_{i}\left(\mathbf{x}_{1}\right)$ on the second level (assuming that the first level consists of the input lists) is of order $|L|^{2}$. This value, $|L|^{2}$, becomes (up to poly (d) factors) the running time of the whole algorithm (compare the Time and Space constants for $k=16,17,18$ in Table 1). The precise shape of $C \in \mathscr{C}$ that makes the costs per level equal can be obtained by equating all the terms in the max of Eq. (4) and minimising the value $|L|^{2}$ under these constraints. Even for small k these computations become rather tedious and we do not attempt to express $C_{i, j}$ as a function of k, which is, in principal, possible.

Finding a configuration for optimal memory. If we want to optimise for memory, the optimal configuration C has all its off diagonal elements $C_{i, j}=-1 / k$. We call such a configuration balanced. It is shown in HK17 that such C maximises $\operatorname{det}(C)$ among all $C \in \mathscr{C}$, which, in turn, minimises the sizes of the input lists (but does not lead to optimal running time as the costs per level are not equal).

[^3]Fig. 1: Algorithms for the configuration problem. Procedures Filter ${ }_{i, j}$ receive as input a vector (e.g. \mathbf{x}_{1}), a list of vectors (e.g. L_{2}), and a real number $C_{i, j}$, the target inner product. It creates another shorter list (e.g. $\left.L_{2}\left(\mathbf{x}_{1}\right)\right)$ that contains all vectors from the input list whose inner product with the input vector is within some small ε from the target inner product.

(a) The algorithm of Bai et al. BLS16 for the configuration problem.

(b) The algorithm of Herold et al. HKL18 for the configuration problem.

4 Quantum Configuration Search

In this section we present several quantum algorithms for the configuration problem (Definition 3). As explained in Section 3, this directly translates to quantum sieving algorithms for SVP. We start with a quantum version of the BLS style configuration search BLS16, then we show how to improve this algorithm by constructing intermediate lists. In the full version KMPR19, App. B] we show how nearest neighbour methods in the quantum setting speed up the latter algorithm.

Recall the configuration problem: as input we receive k lists $L_{i}, i \in[k]$ each of size a power of two ${ }^{4}$ a configuration matrix $C \in \mathbb{R}^{k \times k}$ and $\varepsilon \geq 0$. To describe our first algorithm we denote by $f_{[i], j}$ a function that takes as input $(i+1)$ many d-dimensional vectors and is defined as

$$
f_{[i], j}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}, \mathbf{x}\right)= \begin{cases}1, & \left|\left\langle\mathbf{x}_{\ell}, \mathbf{x}\right\rangle-C_{\ell, j}\right| \leq \varepsilon, \quad \ell \in[i] \\ 0, & \text { else }\end{cases}
$$

A reversible embedding of $f_{[i], j}$ is denoted by $O_{f_{[i], j}}$. Using these functions we perform a check for "good" elements and construct the lists $L_{j}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{i}\right)$. Furthermore, we assume that any vector encountered by the algorithm fits into \bar{d} qubits. We denote by $|\mathbf{0}\rangle$ the \bar{d}-tensor of 0 qubits, i.e. $|\mathbf{0}\rangle=\left|0^{\otimes \bar{d}}\right\rangle$.

The input lists, $L_{i}, i \in[k]$, are stored classically and are assumed to be quantumly accessible. In particular, we assume that we can efficiently construct a uniform superposition over all elements from a given list by first applying Hadamards to $|\mathbf{0}\rangle$ to create a superposition over all indices, and then by querying $L[i]$ for each i in the superposition. That is, we assume an efficient circuit for $\frac{1}{\sqrt{|L|}} \sum_{i}|i\rangle|\mathbf{0}\rangle \rightarrow \frac{1}{\sqrt{|L|}} \sum_{i}|i\rangle|L[i]\rangle$. For simplicity, we ignore the first qubit that stores indices and we denote by $\left|\Psi_{L}\right\rangle$ a uniform superposition over all the elements in L, i.e. $\left|\Psi_{L}\right\rangle=\frac{1}{\sqrt{|L|}} \sum_{\mathbf{x} \in L}|\mathbf{x}\rangle$.

The idea of our algorithm for the configuration problem is the following. We have a global classical loop over $\mathbf{x}_{1} \in L_{1}$ inside which we run our quantum algorithm to find a $(k-1)$ tuple $\left(\mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right)$ that together with \mathbf{x}_{1} gives a solution to the configuration problem. We expect to have $\mathcal{O}(1)$ such $(k-1)$ tuples per $\mathbf{x}_{1} \sqrt{5}$ At the end of the algorithm we expect to obtain such a solution by means of amplitude amplification (Theorem 22. In Theorem 6 we argue that this procedure succeeds in finding a solution with probability at least $1-2^{-\Omega(d)}$.

Inside the classical loop over \mathbf{x}_{1} we prepare $(k-1) \bar{d}$ qubits, which we arrange into $k-1$ registers, so that each register will store (a superposition of) input vectors, see Figure 2. Each such register is set in uniform superposition over the elements of the input lists: $\left|\Psi_{L_{2}}\right\rangle \otimes\left|\Psi_{L_{3}}\right\rangle \otimes \cdots \otimes\left|\Psi_{L_{k}}\right\rangle$. We apply Grover's algorithm on $\left|\Psi_{L_{2}}\right\rangle$. Each Grover's iteration is defined by the unitary $Q_{1,2}=$

[^4]$-H^{\otimes \bar{d}} R H^{\otimes \bar{d}} O_{f_{[1], 2}}$. Here H is the Hadamard gate and R is the rotation around $|\mathbf{0}\rangle$. We have $\left|L_{2}\left(\mathbf{x}_{1}\right)\right|$ "good" states out of $\left|L_{2}\right|$ possible states in $\left|\Psi_{L_{2}}\right\rangle$, so after $\mathcal{O}\left(\sqrt{\frac{\left|L_{2}\right|}{\left|L_{2}\left(\mathbf{x}_{1}\right)\right|}}\right)$ applications of $Q_{1,2}$ we obtain the state
\[

$$
\begin{equation*}
\left|\Psi_{L_{2}\left(\mathbf{x}_{1}\right)}\right\rangle=\frac{1}{\sqrt{\left|L_{2}\left(\mathbf{x}_{1}\right)\right|}} \sum_{\mathbf{x}_{2} \in L_{2}\left(\mathbf{x}_{1}\right)}\left|\mathbf{x}_{2}\right\rangle \tag{5}
\end{equation*}
$$

\]

In fact, what we create is a state close to Eq. (5) as we do not perform any measurement. For now, we drop the expression "close to" for all the states in this description, and argue about the failure probability in Theorem 6.

Fig. 2: Quantum circuit representing the quantum part of Algorithm 4.1 with $k=4$, i.e. this circuit is executed inside the loop over $\mathbf{x}_{1} \in L_{1}$. The Hadamard gates create the superposition $\left|\Psi_{L_{2}}\right\rangle \otimes\left|\Psi_{L_{3}}\right\rangle \otimes\left|\Psi_{L_{4}}\right\rangle$. We apply $\sqrt{\frac{\left|L_{2}\right|}{\left|L_{2}\left(\mathbf{x}_{1}\right)\right|}}$ Grover iterations to $\left|\Psi_{L_{2}}\right\rangle$ to obtain the state $\left|\Psi_{L_{2}\left(\mathbf{x}_{2}\right)}\left(\mathbf{x}_{1}\right)\right\rangle \otimes\left|\Psi_{L_{3}}\right\rangle \otimes\left|\Psi_{L_{4}}\right\rangle$. We then apply (sequentially) $\mathcal{O}\left(\sqrt{\frac{\left|L_{3}\right|}{\left|L_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right|}}\right) \operatorname{resp} . \mathcal{O}\left(\sqrt{\frac{\left|L_{4}\right|}{\left|L_{4}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right|}}\right)$ Grover iterations to the second resp. third registers, where the checking function takes as input the first and second resp. the first and third registers. This whole process is \mathcal{A} and is repeated $\mathcal{O}\left(\sqrt{\left|L_{2}\left(\mathbf{x}_{1}\right)\right| \cdot\left|L_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right|\left|L_{4}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right|}\right)$ times inside the amplitude amplification. Final measurement gives a triple $\left(\mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right)$ which, together with a fixed \mathbf{x}_{1}, forms a solution to the configuration problem.

Now consider the state $\left|\Psi_{L_{2}\left(\mathbf{x}_{1}\right)}\right\rangle \otimes\left|\Psi_{L_{3}}\right\rangle$ and the function $f_{[2], 3}$ that uses the first and second registers and a fixed \mathbf{x}_{1} as inputs. We apply the unitary $Q_{2,3}$ to $\left|\Psi_{L_{3}}\right\rangle$, where $Q_{2,3}=-H^{\otimes \bar{d}} R H^{\otimes \bar{d}} O_{f_{[2], 3}}$. In other words, for all vectors from L_{3}, we check if they satisfy the inner product constraints with respect to \mathbf{x}_{1} and \mathbf{x}_{2}. In this setting there are $\left|L_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right|$ "good" states in $\left|\Psi_{L_{3}}\right\rangle$ whose amplitudes we aim to amplify. Applying Grover's iteration unitary $Q_{2,3}$ the order of $\mathcal{O}\left(\sqrt{\frac{\left|L_{3}\right|}{\left|L_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right|}}\right)$ times, we obtain the state

$$
\left|\Psi_{L_{2}\left(\mathbf{x}_{1}\right)}\right\rangle\left|\Psi_{L_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)}\right\rangle=\frac{1}{\sqrt{\left|L_{2}\left(\mathbf{x}_{1}\right)\right|}} \sum_{\mathbf{x}_{2} \in L_{2}\left(\mathbf{x}_{1}\right)}\left|\mathbf{x}_{2}\right\rangle\left(\frac{1}{\sqrt{\left|L_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right|}} \sum_{\mathbf{x}_{3} \in L_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)}\left|\mathbf{x}_{3}\right\rangle\right)
$$

We continue creating the lists $L_{i+1}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{i}\right)$ by filtering the initial list L_{i+1} with respect to \mathbf{x}_{1} (fixed by the outer classical loop), and with respect to $\mathbf{x}_{2}, \ldots, \mathbf{x}_{i}$ (given in a superposition) using the function $f_{[i], i+1}$. At level $k-1$ we obtain the state $\left|\Psi_{L_{2}\left(\mathbf{x}_{1}\right)}\right\rangle \otimes\left|\Psi_{L_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)}\right\rangle \otimes \ldots \otimes\left|\Psi_{L_{k-1}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)}\right\rangle$. For the last list L_{k} we filter with respect to $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}$ as for the list L_{k-1}. Finally, for a fixed \mathbf{x}_{1}, the "filtered" state we obtained is of the form

$$
\begin{equation*}
\left|\Psi_{F}\right\rangle=\left|\Psi_{L_{2}\left(\mathbf{x}_{1}\right)}\right\rangle \otimes\left|\Psi_{L_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)}\right\rangle \otimes \ldots \otimes\left|\Psi_{L_{k-1}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)}\right\rangle \otimes\left|\Psi_{L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)}\right\rangle \tag{6}
\end{equation*}
$$

The state is expected to contain $\mathcal{O}(1)$ many $(k-1)$-tuples $\left(\mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right)$ which together with \mathbf{x}_{1} give a solution to the configuration problem. To prepare the state $\left|\Psi_{F}\right\rangle$ for a fixed \mathbf{x}_{1}, we need

$$
\begin{equation*}
T_{\mathrm{InGrover}}=\mathcal{O}\left(\sqrt{\left(\frac{\left|L_{2}\right|}{\left|L_{2}\left(\mathbf{x}_{1}\right)\right|}\right)}+\ldots+\sqrt{\left(\frac{\left|L_{k}\right|}{\left|L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)\right|}\right)}\right) \tag{7}
\end{equation*}
$$

unitary operations of the form $\left(-H^{\otimes \bar{d}}\right) R H^{\otimes \bar{d}} O_{f_{[i], j}}$. This is what we call the "inner" Grover procedure.

Let us denote by \mathcal{A} an algorithm that creates $\left|\Psi_{F}\right\rangle$ from $|\mathbf{0}\rangle \otimes \ldots \otimes|\mathbf{0}\rangle$ in time $T_{\text {InGrover }}$. In order to obtain a solution tuple $\left(\mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right)$ we apply amplitude amplification using the unitary $Q_{\text {Outer }}=-\mathcal{A} R \mathcal{A}^{-1} O_{g}$, where g is the function that operates on the last two registers and is defined as

$$
g\left(\mathbf{x}, \mathbf{x}^{\prime}\right)= \begin{cases}1, & \left|\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle-C_{k-1, k}\right| \leq \varepsilon \tag{8}\\ 0, & \text { else }\end{cases}
$$

Notice that in the state $\left|\Psi_{F}\right\rangle$ it is only the last two registers storing \mathbf{x}_{k-1} and \mathbf{x}_{k} that are left to be checked against the target configuration. This is precisely what we use O_{g} to check. Let $|\mathbf{z}\rangle=\left|\mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\rangle$ be a solution tuple. The state $|\mathbf{z}\rangle$ appears in $\left|\Psi_{F}\right\rangle$ with amplitude

$$
\left\langle\mathbf{z} \mid \Psi_{F}\right\rangle=\mathcal{O}\left(\left(\sqrt{\left|L_{2}\left(\mathbf{x}_{1}\right)\right| \cdot \ldots \cdot\left|L_{k-1}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)\right| \cdot\left|L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)\right|}\right)^{-1}\right)
$$

This value is the inverse of the number of iteration steps $Q_{\text {Outer }}$ which we repeat in order to obtain \mathbf{z} when measuring $\left|\Psi_{F}\right\rangle$. The overall complexity of the algorithm for the configuration problem becomes

$$
\begin{align*}
T_{\mathrm{BLS}}^{\mathrm{Q}}=\mathcal{O}\left(\left|L_{1}\right|\right. & \left(\sqrt{\left(\frac{\left|L_{2}\right|}{\left|L_{2}\left(\mathbf{x}_{1}\right)\right|}\right)}+\ldots+\sqrt{\left(\frac{\left|L_{k}\right|}{\left|L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)\right|}\right)}\right) \tag{9}\\
& \left.\cdot \sqrt{\left|L_{2}\left(\mathbf{x}_{1}\right)\right| \cdot\left|L_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right| \cdot \ldots \cdot\left|L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)\right|}\right)
\end{align*}
$$

where all the filtered lists in the above expression are assumed to be of expected size greater than or equal to 1 . For certain target configurations intermediate lists are of sizes less than 1 in expectation (see Eq. (11)), which should be understood as the expected number of times we need to construct these lists to obtain 1 element in them. So there will exist elements in the superposition for which a solution does not exist. Still, for the elements, for which a solution does exist (we expect $\mathcal{O}(1)$ of these), we perform $\mathcal{O}(\sqrt{|L|})$ Grover iterations during the "inner" Grover procedure, and during the "outer" procedure these "good" elements contribute a $\mathcal{O}(1)$ factor to the running time. Therefore formally, each $\left|L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}\right)\right|$ in Eq. (9) should be changed to $\max \left\{1,\left|L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}\right)\right|\right\}$. Alternatively, one can enforce that intermediate lists are of size greater than 1 by choosing the target configuration appropriately.

```
Algorithm 4.1 Quantum algorithm for the Configuration Problem
Input: \(L_{1}, \ldots, L_{k}-\) lists of vectors from \(\mathrm{S}^{d-1}\), target configuration \(C_{i, j}=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \in\)
\(\mathbb{R}^{k \times k}\) - a Gram matrix, \(\varepsilon>0\).
Output: \(L_{\text {out }}-\) list of \(k\)-tuples \(\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right) \in L_{1} \times \cdots \times L_{k}\), s.t. \(\left|\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle-C_{i j}\right| \leq \varepsilon\)
for all \(i, j\).
    \(L_{\text {out }} \leftarrow \emptyset\)
    for all \(\mathrm{x}_{1} \in L_{1}\) do
        Prepare the state \(\left|\Psi_{L_{2}}\right\rangle \otimes \ldots \otimes\left|\Psi_{L_{k}}\right\rangle\)
        for all \(i=2 \ldots k-1\) do
            Run Grover's on the \(i^{\text {th }}\) register with the checking function \(f_{[i-1], i}\) to trans-
    form the state \(\left|\Psi_{L_{i}}\right\rangle\) to the state \(\left|\Psi_{L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}\right)}\right\rangle\).
    6: Run Grover's on the \(k^{\text {th }}\) register with the checking function \(f_{[k-2], k}\) to transform
        the state \(\left|\Psi_{L_{k}}\right\rangle\) to the state \(\left|\Psi_{L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)}\right\rangle\).
    7: \(\quad\) Let \(\mathcal{A}\) be unitary that implements steps 3-6, i.e.
                    \(\mathcal{A}\left|\mathbf{0}^{\otimes k}\right\rangle \rightarrow\left|\Psi_{F}\right\rangle\).
    8: Run amplitude amplification using the unitary \(-\mathcal{A R} \mathcal{A}^{-1} O_{g}\), where \(g\) is defined
    in Eq. (8).
        Measure all the registers, obtain a tuple \(\left(\mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right)\).
        if \(\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)\) satisfies \(C\) then
            \(L_{\text {out }} \leftarrow L_{\text {out }} \cup\left\{\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)\right\}\).
```

The procedure we have just described is summarised in Algorithm 4.1. If we want to use this algorithm to solve the Approximate k-List problem (Definition 11, we additionally require that the number of output solutions is equal to the size of the input lists. Using the results of Theorem 4. we can express the complexity of Algorithm 4.1 for the Approximate k-List problem via the determinant of the target configuration C and its minors.

Theorem 6. Given input $L_{1}, \ldots, L_{k} \subset \mathrm{~S}^{d-1}$ and a configuration $C \in \mathscr{C}$, such that Eq. (2) holds, Algorithm 4.1 solves the Approximate k-List problem in time

$$
\begin{equation*}
T_{\text {k-List }}=\widetilde{\mathcal{O}}\left(\left(\left(\frac{1}{\operatorname{det}(C)}\right)^{\frac{k+1}{2(k-1)}} \cdot \sqrt{\operatorname{det}(C[1 \ldots k-1])}\right)^{d / 2}\right) \tag{10}
\end{equation*}
$$

using $M_{\text {k-List }}=\widetilde{\mathcal{O}}\left(\left(\frac{1}{\operatorname{det}(C)}\right)^{\frac{d}{2(k-1)}}\right)$ classical memory and poly (d) quantum memory with success probability at least $1-2^{-\Omega(d)}$.

Proof. From Theorem 4, the input lists L_{1}, \ldots, L_{k} should be of sizes $|L|=$ $\widetilde{\mathcal{O}}\left(\left(\frac{1}{\operatorname{det}(C)}\right)^{\frac{d}{2(k-1)}}\right)$ to guarantee a sufficient number of solutions. This determines the requirement for classical memory. Furthermore, since all intermediate lists are stored in the superposition, we require quantum registers of size poly (d).

Next, we can simplify the expression for $T_{\text {BLS }}^{Q}$ given in Eq. (9) by noting that $\left|L_{2}\left(\mathbf{x}_{1}\right)\right| \geq\left|L_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right| \geq \ldots \geq\left|L_{k-1}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)\right|=\left|L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)\right|$. The dominant term in the sum appearing in Eq. (9) is $\sqrt{\left(\frac{\left|L_{k}\right|}{\left|L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)\right|}\right)}$.

From Theorem 5 , the product $\sqrt{\left|L_{2}\left(\mathbf{x}_{1}\right)\right| \cdot \ldots \cdot\left|L_{k-1}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)\right|}$ in Eq. (9) can be simplified to $|L|^{\frac{k-2}{2}}(\sqrt{\operatorname{det}(C[1 \ldots k-1])})^{d / 2}$, from where we arrive at the expression for $T_{\text {k-List }}$ as in the statement.

The success probability of Algorithm 4.1 is determined by the success probability of the amplitude amplification run in Step 8. For this we consider the precise form of the state $\left|\Psi_{F}\right\rangle$ given in Eq. (6). This state is obtained by running $k-1$ (sequential) Grover algorithms. Each tensor $\left|\Psi_{L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}\right)}\right\rangle$ in this state is a superposition

$$
\begin{array}{r}
\left|\Psi_{L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}\right)}\right\rangle=\sqrt{\frac{1-\epsilon_{i}}{\left|L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}\right)\right|}}
\end{array} \sum_{\mathbf{x} \in L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}\right)}|\mathbf{x}\rangle+
$$

where $\epsilon_{i}<\frac{\left|L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}\right)\right|}{\left|L_{i}\right|} \leq 2^{-\Omega(d)}$. The first inequality comes from the success probability of Grover's algorithm, Theorem 1, the second inequality is due to the fact that all lists on a "lower" level are exponentially smaller than lists on a "higher" level, see Theorem 5. Therefore, the success probability of the
amplitude amplification is given by $\prod_{i=2}^{k-1} \frac{1-\epsilon_{i}}{\left|L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}\right)\right|} \cdot \frac{1-\epsilon_{k}}{\left|L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)\right|} \geq(1-$ $\left.2^{-\Omega(d)}\right) \prod_{i=2}^{k-1}\left|L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}\right)\right|^{-1}$. According to Theorem 2, after performing $\mathcal{O}\left(\prod_{i=2}^{k}\left|L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}\right)\right|\left|L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)\right|\right)$ amplitude amplification iterations, in Step 9 we measure a "good" $\left(\mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right)$ with probability at least $1-2^{-\Omega(d)}$.

4.1 Quantum version of the Configuration search algorithm from HKL18]

The main difference between the two algorithms for the configuration problem - the algorithm due to Bai-Laarhoven-Stehlé BLS16 and due to Herold-Kirshanova-Laarhoven HKL18 - is that the latter constructs intermediate filtered lists, Figure 1. We use quantum enumeration to construct and classically store these lists.

For a fixed \mathbf{x}, quantum enumeration repeatedly applies Grover's algorithm to an input list L_{i}, where each application returns a random vector from the filtered list $L_{i}(\mathbf{x})$ with probability greater than $1-2^{-\Omega(d)}$. The quantum complexity of obtaining one vector from $L_{i}(\mathbf{x})$ is $\mathcal{O}\left(\sqrt{\frac{\left|L_{i}\right|}{\left|L_{i}(\mathbf{x})\right|}}\right)$. We can also check that the returned vector belongs to $L_{i}(\mathbf{x})$ by checking its inner product with \mathbf{x}. Repeating this process $\widetilde{\mathcal{O}}\left(\left|L_{i}(\mathbf{x})\right|\right)$ times, we obtain the list $L_{i}(\mathbf{x})$ stored classically in time $\widetilde{\mathcal{O}}\left(\sqrt{\left|L_{i}\right| \cdot\left|L_{i}(\mathbf{x})\right|}\right)$. The advantage of constructing the lists $L_{i}(\mathbf{x})$ is that we can now efficiently prepare the state $\left|\Psi_{L_{2}(\mathbf{x})}\right\rangle \otimes \ldots \otimes\left|\Psi_{L_{k}(\mathbf{x})}\right\rangle$ (cf. Line 3 in Algorithm 4.1) and run amplitude amplification on the states $\left|\Psi_{L_{i}(\mathbf{x})}\right\rangle$ rather than on $\left|\Psi_{L_{i}}\right\rangle$. This may give a speed up if the complexity of the Steps 3-11 of Algorithm 4.1, which is of order $\widetilde{\mathcal{O}}\left(T_{\text {BLS }}^{\mathrm{Q}} /\left|L_{1}\right|\right)$, dominates the cost of quantum enumeration, which is of order $\widetilde{\mathcal{O}}\left(\sqrt{\left|L_{i}\right| \cdot\left|L_{i}(\mathbf{x})\right|}\right)$. In general, we can continue creating the "levels" as in HKL18] (see Figure 1b) using quantum enumeration and at some level switch to the quantum BLS style algorithm. For example, for some level $1<j \leq k-1$, we apply quantum enumeration to obtain $L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{j-1}\right)$ for all $i>j$. Then for all $(j-1)$-tuples $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{j-1}\right) \in L_{1} \times \ldots \times L_{j-1}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{j-2}\right)$, apply Grover's algorithm as in steps $3-11$ of Algorithm4.1 but now to the states $\left|\Psi_{L_{j}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{j-1}\right)}\right\rangle \otimes \ldots \otimes\left|\Psi_{L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{j-1}\right)}\right\rangle$. Note that since we have these lists stored in memory, we can efficiently create this superposition. In this way we obtain a quantum "hybrid" between the HKL and the BLS algorithms: until some level j, we construct the intermediate lists using quantum enumeration, create superpositions over all the filtered lists at level j for some fixed values $\mathbf{x}_{1}, \ldots, \mathbf{x}_{j-1}$, and apply Grover's algorothm to find (if it exists) the $(k-j+1)$ tuple $\left(\mathbf{x}_{j}, \ldots, \mathbf{x}_{k}\right)$. Pseudocode for this approach is given in Algorithm 4.2 .

Let us now analyse Algorithm 4.2. To simplify notation, we denote $L_{i}^{(j)}=$ $L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{j-1}\right)$ for all $i \geq j$, letting $L_{i}^{(1)}$ be the input lists L_{i} (so the upper index denotes the level of the list).

All \mathcal{O} notations are omitted. Each quantum enumeration of $L_{i}^{(j)}$ from $L_{i}^{(j-1)}$ costs $\sqrt{\left|L_{i}^{(j-1)}\right|\left|L_{i}^{(j)}\right|}$. On level $1 \leq \ell \leq j-1$, we repeat such an enumeration

```
Algorithm 4.2 Hybrid quantum algorithm for the Configuration Problem
Input: \(L_{1}, \ldots, L_{k}\), lists of vectors from \(\mathrm{S}^{d-1}\), target configuration \(C_{i, j}=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \in\)
\(\mathbb{R}^{k \times k}, \varepsilon>0,2 \leq j \leq k-1\), level we construct the intermediate filtered lists until.
Output: \(L_{\text {out }}-\) list of \(k\)-tuples \(\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right) \in L_{1} \times \cdots \times L_{k}\), s.t. \(\left|\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle-C_{i j}\right| \leq \varepsilon\)
for all \(i, j\).
    \(L_{\text {out }} \leftarrow \emptyset\)
    for all \(\mathbf{x}_{1} \in L_{1}\) do
        Use quantum enumeration to construct \(L_{i}\left(\mathbf{x}_{1}\right)\) for \(\forall i \geq 2\)
        for all \(\mathbf{x}_{2} \in L_{2}\left(\mathbf{x}_{1}\right)\) do
            Use quantum enumeration to construct \(L_{i}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right), \forall i \geq 3\)
            \(\ddots\).
                for all \(\mathbf{x}_{j-1} \in L_{j-1}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{j-2}\right)\) do
                        Use quantum enumeration to construct \(L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{j-1}\right), \forall i \geq j\)
                Prepare the state \(\left|\Psi_{L_{j}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{j-1}\right)}\right\rangle \otimes \ldots \otimes\left|\Psi_{L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{j-1}\right)}\right\rangle\)
                for all \(i=j+1 \ldots k-1\) do
                            Run Grover's on the \(i^{\text {th }}\) register with the checking function \(f_{[i-1], i}\)
    to transform the state \(\left|\Psi_{L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{j-1}\right)}\right\rangle\) to the state \(\left|\Psi_{L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}\right)}\right\rangle\).
2: \(\quad\) Run Grover's on the \(k^{\text {th }}\) register with the checking function \(f_{[k-2], k}\) to
    transform the state \(\left|\Psi_{L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{j-1}\right)}\right\rangle\) to the state \(\left|\Psi_{L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)}\right\rangle\).
13: \(\quad\) Let \(\mathcal{A}\) be unitary that implements Steps 9 -12, i.e.
\[
\mathcal{A}\left|\mathbf{0}^{\otimes(k-j+1)}\right\rangle \rightarrow\left|\Psi_{L_{j}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{j-1}\right)}\right\rangle \otimes\left|\Psi_{L_{k}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-2}\right)}\right\rangle
\]
14: \(\quad\) Run amplitude amplification using the unitary \(-\mathcal{A} R \mathcal{A}^{-1} O_{g}\), where \(g\) is defined in Eq. 8).
15: \(\quad\) Measure all the registers, obtain a tuple \(\left(\mathbf{x}_{j}, \ldots, \mathbf{x}_{k}\right)\).
16: \(\quad\) if \(\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)\) satisfies \(C\) then
17: \(\quad L_{\text {out }} \leftarrow L_{\text {out }} \cup\left\{\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)\right\}\).
```

$\prod_{r=1}^{\ell-1}\left|L_{r}^{(r)}\right|$ times to create the intermediate lists, once for each $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\ell-1}\right)$. Once the lists $L_{i}^{(j)}, i \geq j$, are constructed, Grover's algorithm gives the state $\left|\Psi_{L_{j}^{(j)}}\right\rangle \ldots\left|\Psi_{L_{k-1}^{(k-1)}}\right\rangle\left|\Psi_{L_{k}^{(k-1)}}\right\rangle$ in time $\left(\sqrt{\frac{\left|L_{j+1}^{(j)}\right|}{\left|L_{j+1}^{(j+1)}\right|}}+\ldots+\sqrt{\frac{\left|L_{k-1}^{(j)}\right|}{\left|L_{k-1}^{(k-1)}\right|}}+\sqrt{\frac{\left|L_{k}^{(j)}\right|}{\left|L_{k}^{(k-1)}\right|}}\right)$ (Steps 11-12 in Algorithm 4.2). On Step 14 the unitary \mathcal{A} must be executed $\sqrt{\left|L_{j}^{(j)}\right| \cdot \ldots \cdot\left|L_{k-1}^{(k-1)}\right| \cdot\left|L_{k}^{(k-1)}\right|}$ times to ensure that the measurement of the system gives the "good" tuple $\left(\mathbf{x}_{j}, \ldots, \mathbf{x}_{k}\right)$.

Such tuples may not exist: for $j \geq 3$, i.e. for fixed $\mathbf{x}_{1}, \mathbf{x}_{2}$, we expect to have less than 1 such tuples. So most of the time, the measurement will return a random $(k-j+1)$-tuple, which we classically check against the target configuration C.

Overall, given on input a level j, the runtime of Algorithm 4.2 is

$$
\begin{array}{r}
T_{\mathrm{Hybrid}}^{\mathrm{Q}}(j)= \\
\max _{1 \leq \ell \leq j-1}\left\{\prod_{r=1}^{\ell-1}\left|L_{r}^{(r)}\right| \cdot \max _{\ell \leq i \leq k}\left\{\sqrt{\left|L_{i}^{(\ell)}\right|\left|L_{i}^{(\ell+1)}\right|}\right\}\right. \tag{11}\\
\prod_{r=1}^{j-1}\left|L_{r}^{(r)}\right|\left(\sqrt{\frac{\left|L_{j+1}^{(j)}\right|}{\left|L_{j+1}^{(j+1)}\right|}}+\ldots+\sqrt{\frac{\left|L_{k-1}^{(j)}\right|}{\left|L_{k-1}^{(k-1)}\right|}}+\sqrt{\frac{\left|L_{k}^{(j)}\right|}{\left|L_{k}^{(k-1)}\right|}}\right) \\
\left.\cdot \sqrt{\left|L_{j}^{(j)}\right| \ldots\left|L_{k-1}^{(k-1)}\right| \cdot\left|L_{k}^{(k-1)}\right|}\right\}
\end{array}
$$

Similar to Eq. (9), all the list sizes in the above formula are assumed to be greater than or equal to 1 . If, for a certain configuration it happens that the expected size of a list is less than 1 , it should be replaced with 1 in this expression. The above complexity can be expressed via the subdeterminants of the target configuration C using Theorem 5 An optimal value of level j for a given C can be found via numerical optimisations that searches for j that minimises Eq. 11.

Speed-ups with nearest neighbour techniques. We can further speed up the creation of filtered lists in both Algorithms 4.1 and 4.2 with a quantum version of nearest neighbour search. In the full version KMPR19, App. B] we describe a locality sensitive filtering (LSF) technique (first introduced in BDGL16) in the quantum setting, extending the idea of Laarhoven Laa15] to $k>2$.

Numerical optimisations. We performed numerical optimisations for the target configuration C which minimises the runtime of the two algorithms for the configuration problem given in this section. The upper part of Table 2 gives time optimal c for Eq. 10) and the c^{\prime} of the corresponding memory requirements for various k. These constants decrease with k and, eventually, those for time become close to the value 0.2989. The explanation for this behaviour is the following: looking at Eq. (9) the expression decreases when the lists $L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}\right)$ under the square root become smaller. When k is large enough, in particular, once $k \geq 6$, there is a target configuration that ensures that $\left|L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}\right)\right|$ are of expected size 1 for levels $i \geq 4$. So for $k \geq 6$, under the observation that the maximal value in the sum appearing in Eq. (9) is attained by the last summand, the runtime of Algorithm 4.1 becomes $T_{\mathrm{BLS}}^{\mathrm{Q}}=\left|L_{1}\right|^{3 / 2} \cdot \sqrt{\left|L_{2}\left(\mathbf{x}_{1}\right)\right|\left|L_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right|}$. The list sizes can be made explicit using Eq. (3) when a configuration C is such that $\left|L_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}\right)\right|$ are of expected size 1. Namely, for $k \geq 6$ and for configuration C that minimises the runtime exponent, Eq. (9) with the help of Eq. (3) simplifies to $\left(\left(\frac{1}{\operatorname{det} C}\right)^{\frac{5}{2(k-1)}} \sqrt{\operatorname{det} C[1,2,3]}\right)^{d / 2}$.

The optimal runtime exponents for the hybrid, Algorithm4.2, with $j=2$ are given in the middle part of Table 2. Experimentally, we establish that $j=2$ is optimal for small values of k and that this algorithm has the same behaviour for large values of k as Algorithm 4.1. The reason is the following: for the runtime optimal configuration C the intermediate lists on the same level increase in size

k	2	3	4	5	6		28	29	30
Quantum version of [BLS16 Algorithm 4.1									
Time	0.3112	0.3306	0.3289	0.3219	0.3147		0.29893	0.29893	0.29893
Space	0.2075	0.1907	0.1796	0.1685	0.1596		0.1395	0.1395	0.1395
Quantum Hybrid version of BLS16[HKL18] Algorithm 4.2									
Time	0.3112	0.3306	0.3197	0.3088	0.3059		0.29893	0.29893	0.29893
Space	0.2075	0.1907	0.1731	0.1638	0.1595		0.1395	0.1395	0.1395
Low memory Quantum Hybrid version of BLS16HKL18] Algorithm 4.2									
Time	0.3112	0.3349	0.3215	0.3305	0.3655	...	0.6352	0.6423	0.6490
Space	0.2075	0.1887	0.1724	0.1587	0.1473	...	0.0637	0.0623	0.0609

Table 2: Asymptotic complexity exponents for the approximate k-List problem, base 2 . The top part gives optimised runtime exponents and the corresponding memory exponents for Algorithm 4.1. These are the results of the optimisation (minimisation) of the runtime expression given in Eq. 10). The middle part gives the runtime and memory exponents for Algorithm 4.2, again optimising for time, with $j=2$, i.e. when we use quantum enumeration to create the second level lists $L_{i}\left(\mathbf{x}_{1}\right), i \geq 2$. The bottom part gives the exponents for Algorithm 4.2 with $j=2$ in the memory optimal setting.
"from left to right", i.e. $\left|L_{2}\left(\mathbf{x}_{1}\right)\right| \leq\left|L_{3}\left(\mathbf{x}_{1}\right)\right| \leq \ldots, \leq\left|L_{k}\left(\mathbf{x}_{1}\right)\right|$. It turns out that $\left|L_{k}\left(\mathbf{x}_{1}\right)\right|$ becomes almost $\left|L_{k}\right|$ (i.e. the target inner product is very close to 0), so quantumly enumerating this list brings no advantage over Algorithm 4.1 where we use the initial list L_{k}, of essentially the same size, in Grover's algorithm.

5 Quantum Configuration Search via k-Clique Listing

In this section we introduce a distinct approach to finding solutions of the configuration problem, Definition 3, via k-clique listing in graphs. We achieve this by repeatedly applying k-clique finding algorithms to the graphs. Throughout this section we assume that $L_{1}=\cdots=L_{k}=L$. We first solve the configuration problem with $k=3, C$ the balanced configuration with all off diagonals equal to $-1 / 3$ and the size of L determined by Eq. (22). We then adapt the idea to the case for general k. In the full version KMPR19, App. C] we give the $k=4$ balanced case and consider unbalanced configurations.

Let $G=(V, E)$ be an undirected graph with known vertices and an oracle $O_{G}: V^{2} \rightarrow\{$ True, False $\}$. On input $\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in V^{2}, O_{G}$ returns True if $\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in$ E and False otherwise. A k-clique is $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ such that $O_{G}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=$ True for $i \neq j$. Given $k,\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \in E \Longleftrightarrow\left|\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle+1 / k\right| \leq \varepsilon$ for some $\varepsilon>0$. In both cases, the oracle computes a d dimensional inner product and compares the result against the target configuration. Throughout we let $|V|=n$ and $|E|=m$.

5.1 The Triangle Case

We start with the simple triangle finding algorithm of $\mathrm{BdWD}^{+} 01$]. A triangle is a 3 -clique. Given the balanced configuration and $k=3$ on S^{d-1}, we have

$$
\begin{equation*}
n=|L|=\widetilde{\mathcal{O}}\left((3 \sqrt{3} / 4)^{d / 2}\right), m=|L|\left|L\left(\mathbf{x}_{1}\right)\right|=\widetilde{\mathcal{O}}\left(n^{2}(8 / 9)^{d / 2}\right) \tag{12}
\end{equation*}
$$

by Eq. (2) and Theorem 5 respectively ${ }^{6}$ We expect $\Theta(n)$ triangles to be found [HKL18]. The algorithm of $\left[\mathrm{BdWD}{ }^{+} 01\right]$ consists of three steps:

1. Use Grover's algorithm to find any edge $\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in E$ among all potential $\mathcal{O}\left(n^{2}\right)$ edges.
2. Given an edge ($\mathbf{x}_{1}, \mathbf{x}_{2}$) from Step 1, use Grover's algorithm to find a vertex $\mathrm{x}_{3} \in V$, such that $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ is a triangle.
3. Apply amplitude amplification on Steps 1-2.

Note that the algorithm searches for any triangle in the graph, not a fixed one. To be more explicit about the use of the oracle O_{G}, below we describe a circuit that returns a triangle. Step 1 takes the state $\frac{1}{n} \sum_{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in V^{2}}\left|\mathbf{x}_{1}\right\rangle \otimes\left|\mathbf{x}_{2}\right\rangle$ and applies $\mathcal{O}\left(\sqrt{n^{2} / m}\right)$ times the Grover iteration given by $-H^{\otimes 2 \bar{d}} R H^{\otimes 2 \bar{d}} O_{G}$. The output is the state $\sqrt{\frac{\epsilon}{n^{2}-m}} \sum_{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \notin E}\left|\mathbf{x}_{1}\right\rangle \otimes\left|\mathbf{x}_{2}\right\rangle+\sqrt{\frac{1-\epsilon}{m}} \sum_{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in E}\left|\mathbf{x}_{1}\right\rangle \otimes\left|\mathbf{x}_{2}\right\rangle$, where ϵ represents the probability of failure. We disregard this as in the proof of Theorem 6. We then join with a uniform superposition over the vertices to create the state $\frac{1}{\sqrt{m}} \sum_{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in E}\left|\mathbf{x}_{1}\right\rangle \otimes\left|\mathbf{x}_{2}\right\rangle \otimes \frac{1}{\sqrt{n}} \sum_{\mathbf{x}_{3} \in V}\left|\mathbf{x}_{3}\right\rangle$ and apply $-H^{\otimes 3 \bar{d}} R H^{\otimes 3 \bar{d}} O_{G}^{\Delta}$ $\mathcal{O}(\sqrt{n})$ times. This oracle O_{G}^{Δ} outputs True on a triple from V^{3} if each pair of vertices has an edge. We call the final state $\left|\Psi_{F}\right\rangle$. Let $\mathcal{A}\left|\mathbf{0}^{\otimes 3}\right\rangle \rightarrow\left|\Psi_{F}\right\rangle$, then we apply amplitude amplification with \mathcal{A} repeated some number of times determined by the success probability of \mathcal{A} calculated below.

Given that oracle queries O_{G} or O_{G}^{Δ} have some poly (d) cost, we may calculate the time complexity of this method directly from the query complexity. The cost of the first step is $\mathcal{O}\left(\sqrt{n^{2} / m}\right)$ and the second step $\mathcal{O}(\sqrt{n})$. From Eq. $\sqrt{12}$, and that the costs of Step 1 and Step 2 are additive, we see that $\mathcal{O}(\sqrt{n})$ dominates, therefore Steps $1-2 \operatorname{cost} \mathcal{O}(\sqrt{n})$. The probability that Step 2 finds a triangle is the probability that Step 1 finds an edge of a triangle. Given that there are $\Theta(n)$ triangles, this probability is $\Theta(n / m)$, therefore by applying the amplitude amplification in Step 3, the cost of finding a triangle is $\mathcal{O}(\sqrt{m})]^{7}$

The algorithm finds one of the n triangles uniformly at random. By the coupon collector's problem we must repeat the algorithm $\widetilde{\mathcal{O}}(n)$ times to find

[^5]all the triangles. Therefore the total cost of finding all triangles is $\widetilde{\mathcal{O}}(n \sqrt{m})=$ $\widetilde{\mathcal{O}}\left(|L|^{3 / 2}\left|L\left(\mathbf{x}_{1}\right)\right|^{1 / 2}\right) \approx 2^{0.3349 d+o(d)}$ using $2^{0.1887 d+o(d)}$ memory. This matches the complexity of Algorithm 4.1 for $k=3$ in the balanced case.

5.2 The General \boldsymbol{k}-Clique Case

The algorithm generalises to arbitrary constant k. We have a graph with $|L|$ vertices, $|L|\left|L\left(\mathbf{x}_{1}\right)\right|$ edges, $\ldots,|L|\left|L\left(\mathbf{x}_{1}\right)\right| \ldots\left|L\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}\right)\right| i$-cliques for $i \in$ $\{3, \ldots, k-1\}$, and $\Theta(|L|) k$-cliques. The following algorithm finds a k-clique, with $2 \leq i \leq k-1$

1. Use Grover's algorithm to find an edge $\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in E$ among all potential $\mathcal{O}\left(|L|^{2}\right)$ edges.
i. Given an i-clique $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}\right)$ from step $i-1$, use Grover's algorithm to find a vertex $\mathbf{x}_{i+1} \in V$, such that $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i+1}\right)$ is an $(i+1)$-clique.
k. Apply amplitude amplification on Steps $1-(k-1)$.
The costs of Steps $1-(k-1)$ are additive. The dominant term is from Step $k-1$, a Grover search over $|L|$, equal to $\mathcal{O}(\sqrt{|L|})$. To determine the cost of finding one k-clique, we need the probability that Steps $1-(k-1)$ find a k-clique. We calculate the following probabilities, with $2 \leq i \leq k-2$
2. The probability that Step 1 finds a good edge, that is, an edge belonging to a k-clique.
i. The probability that Step i finds a good $(i+1)$-clique given that Step $i-1$ finds a good i-clique.

In Step 1 there are $\mathcal{O}\left(|L|\left|L\left(\mathbf{x}_{1}\right)\right|\right)$ edges to choose from, $\Theta(|L|)$ of which belong to a k-clique. Thus the success probability of this Step is $\Theta\left(1 /\left|L\left(\mathbf{x}_{1}\right)\right|\right)$. Thereafter, in Step i, given an i-clique $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}\right)$ there are $\mathcal{O}\left(\max \left\{\left|L\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}\right)\right|, 1\right\}\right)$ $(i+1)$-cliques on the form $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}, \mathbf{x}_{i+1}\right), \Theta(1)$ of which are good. The success probability of Steps $1-(k-1)$ is equal to $\Theta\left(\prod_{i=1}^{k-2} \max \left\{\left|L\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}\right)\right|, 1\right\}^{-1}\right)$. By applying amplitude amplification at Step k, we get the cost

$$
\mathcal{O}\left(\sqrt{|L|} \sqrt{\prod_{i=1}^{k-2} \max \left\{\left|L\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}\right)\right|, 1\right\}}\right)
$$

for finding one k-clique. Multiplying the above expression by $\widetilde{\mathcal{O}}(|L|)$ gives the total complexity for finding $\Theta(|L|) k$-cliques. This matches the complexity of Algorithm 4.1. Eq. (9), for balanced configurations for all k.

In the full version [KMPR19, App. C] we show how to adapt the above to unbalanced configurations and achieve the same complexity as Algorithm 4.1.

6 Quantum Configuration Search via Triangle Listing

Given the phrasing of the configuration problem as a clique listing problem in graphs, we restrict our attention to the balanced $k=3$ case and appeal to recent work on triangle finding in graphs. Let the notation be as in Section 5 , and in particular recall Eq. (12) then a triangle represents a solution to the configuration problem.

The operations counted in the works discussed here are queries to an oracle that returns whether an edge exists between two vertices in our graph. While, in the case of $\mathrm{BdWD}^{+} 01$, it is simple to translate this cost into a time complexity, for the algorithms which use more complex quantum data structures Gal14 LGN17 it is not. In particular, the costs of computing various auxiliary databases from certain sets is not captured in the total query cost.

The quantum triangle finding works we consider are [BdWD ${ }^{+} 01$ Gal14 LGN17]. In $\left[\mathrm{BdWD}^{+} 01\right]$ a simple algorithm based on nested Grover search and amplitude amplification is given which finds a triangle in $\mathcal{O}(n+\sqrt{n m})$ queries to O_{G}. For sufficiently sparse graphs G, with sparsity measured as $m=\mathcal{O}\left(n^{c}\right)$ and G becoming more sparse as c decreases, this complexity attains the optimal $\Omega(n)$. This is the algorithm extended in Section 5 . In Gal14] an algorithm is given that finds a triangle in $\widetilde{\mathcal{O}}\left(n^{5 / 4}\right)$ queries to O_{G}. This complexity has no dependence on sparsity and is the currently best known result for generic graphs. Finally in LGN17] an interpolation between the two previous results is given as the sparsity of the graph increases.
Theorem 7 ([LGN17, Theorem 1]). There exists a quantum algorithm that solves, with high probability, the triangle finding problem over graphs of n vertices and m edges with query complexity

$$
\begin{cases}\mathcal{O}(n+\sqrt{n m}) & \text { if } 0 \leq m \leq n^{7 / 6} \\ \widetilde{\mathcal{O}}\left(n m^{1 / 14}\right) & \text { if } n^{7 / 6} \leq m \leq n^{7 / 5} \\ \widetilde{\mathcal{O}}\left(n^{1 / 6} m^{1 / 3}\right) & \text { if } n^{7 / 5} \leq m \leq n^{3 / 2} \\ \widetilde{\mathcal{O}}\left(n^{23 / 30} m^{4 / 15}\right) & \text { if } n^{3 / 2} \leq m \leq n^{13 / 8} \\ \widetilde{\mathcal{O}}\left(n^{59 / 60} m^{2 / 15}\right) & \text { if } n^{13 / 8} \leq m \leq n^{2}\end{cases}
$$

More specifically it is shown that for $c \in(7 / 6,2)$ a better complexity can be achieved than shown in $\left[\mathrm{BdWD}^{+} 01\right.$ Gal14 $]$. Moreover at the end points the two previous algorithms are recovered; [BdWD $\left.{ }^{+01}\right]$ for $c \leq 7 / 6$ and Gal14] for $c=2$. We recall that these costs are in the query model, and that for $c>7 / 6$, where we do not recover $\mathrm{BdWD}^{+} 01$, we do not convert them into time complexity.

We explore two directions that follow from the above embedding of the configuration problem into a graph. The first is the most naïve, we simply calculate the sparsity regime (as per [GN17]) that the graph, constructed as in 5.1, lies in.

The second splits our list into triples of distinct sublists and considers graphs formed from the union of said triples of sublists. The sublists are parameterised such that the sparsity and the expected number of triangles in these new graphs can be altered.

6.1 Naïve Triangle Finding

With $G=(V, E)$ and n, m as in 12$)$, we expect to have

$$
m=\mathcal{O}\left(n^{2+\delta}\right)=\mathcal{O}\left(n^{1.5500}\right), \delta=\log (8 / 9) / \log (3 \sqrt{3} / 4)
$$

Therefore finding a single triangle takes $\widetilde{\mathcal{O}}\left(n^{23 / 30} m^{4 / 15}\right)=\widetilde{\mathcal{O}}\left(n^{1.1799}\right)$ queries to O_{G} LGN17. If, to list the expected $\Theta(n)$ triangles, we have to repeat this algorithm $\widetilde{\mathcal{O}}(n)$ times this leads to a total O_{G} query complexity of $\widetilde{\mathcal{O}}\left(n^{2.1799}\right)=$ $2^{0.4114 d+o(d)}$ which is not competitive with classical algorithms HK17 or the approach of Section 5

6.2 Altering the Sparsity

Let n remain as in Eq. 12) and $\gamma \in(0,1)$ be such that we consider $\Gamma=n^{1-\gamma}$ disjoint sublists of $L, \ell_{1}, \ldots, \ell_{\Gamma}$, each with $n^{\prime}=n^{\gamma}$ elements. There are $\mathcal{O}\left(n^{3(1-\gamma)}\right)$ triples of such sublists, $\left(\ell_{i}, \ell_{j}, \ell_{k}\right)$, with i, j, k pairwise not equal and the union of the sublists within one triple, $\ell_{i j k}=\ell_{i} \cup \ell_{j} \cup \ell_{k}$, has size $\mathcal{O}\left(n^{\prime}\right)$. Let $G_{i j k}=$ $\left(\ell_{i j k}, E_{i j k}\right)$ with $\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ in $\ell_{i j k} \times \ell_{i j k},\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in E_{i j k} \Longleftrightarrow\left|\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle+1 / 3\right| \leq \varepsilon$. Using Theorem 5 each $G_{i j k}$ is expected to have

$$
m^{\prime}=\mathcal{O}\left(\left|\ell_{i j k}\right|\left|\ell_{i j k}\left(x_{1}\right)\right|\right)=\mathcal{O}\left(\left(n^{\prime}\right)^{2}(8 / 9)^{d / 2}\right)=\mathcal{O}\left(n^{2 \gamma}(8 / 9)^{d / 2}\right)
$$

edges. By listing all triangles in all $G_{i j k}$ we list all triangles in G, and as n is chosen to expect $\Theta(n)$ triangles in G, we have sufficiently many solutions for the underlying k-List problem. We expect, by Theorem 5

$$
\begin{aligned}
\left|\ell_{i j k}\right|\left|\ell_{i j k}\left(\mathbf{x}_{1}\right)\right|\left|\ell_{i j k}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right| & =\left|\ell_{i j k}\right|\left(\left|\ell_{i j k}\right|(8 / 9)^{d / 2}\right)\left(\left|\ell_{i j k}\right|(2 / 3)^{d / 2}\right) \\
& =\mathcal{O}\left(n^{3 \gamma}\right)(16 / 27)^{d / 2}=\mathcal{O}\left(n^{3 \gamma-2}\right)
\end{aligned}
$$

triangles per $\ell_{i j k}$. We must at least test each $\ell_{i j k}$ once, even if $\mathcal{O}\left(n^{3 \gamma-2}\right)$ is subconstant. The sparsity of $\ell_{i j k}$ given γ is calculated as

$$
m^{\prime}=\mathcal{O}\left(\left(n^{\prime}\right)^{2+\beta(\gamma)}\right), \beta(\gamma)=\frac{\log (8 / 9)}{\gamma \log (3 \sqrt{3} / 4)}
$$

For given γ the number of $\ell_{i j k}$ to test is $\mathcal{O}\left(n^{3(1-\gamma)}\right)$, the number of triangles to list per $\ell_{i j k}$ is $\mathcal{O}\left(n^{3 \gamma-2}\right)$ - we always perform at least one triangle finding attempt and assume listing them all takes $\widetilde{\mathcal{O}}\left(n^{3 \gamma-2}\right)$ repeats - and we are in the sparsity regime $c(\gamma)=2+\beta(\gamma)$ LGN17]. Let a, b represent the exponents of n^{\prime}, m^{\prime} respectively 8^{8} in Theorem 7 given by $m^{\prime}=\left(n^{\prime}\right)^{c(\gamma)}$. We therefore minimise, for $\gamma \in(0,1)$, the exponent of n in $\mathcal{O}\left(n^{3(1-\gamma)}\right) \cdot \widetilde{\mathcal{O}}\left(n^{3 \gamma-2}\right) \cdot \widetilde{\mathcal{O}}\left(\left(n^{\prime}\right)^{a}\left(m^{\prime}\right)^{b}\right)$,

$$
3(1-\gamma)+\max \{0,3 \gamma-2\}+a \gamma+\left(2 \gamma+\frac{\log (8 / 9)}{\log (3 \sqrt{3} / 4)}\right) b
$$

${ }^{8}$ Note that we are considering $G_{i j k}$ rather than G here, hence the $n \leftrightarrow n^{\prime}, m \leftrightarrow m^{\prime}$ notation change.

The minimal query complexity of $n^{1.7298+o(d)}=2^{0.326 d+o(d)}$ is achieved at $\gamma=\frac{2}{3}$.
The above method leaves open the possibility of finding the same triangle multiple times. In particular if a triangle exists in $G_{i j}=\left(\ell_{i j}, E_{i j}\right)$, with $\ell_{i j}$ and $E_{i j}$ defined analogously to $\ell_{i j k}$ and $E_{i j k}$, then it will be found in $G_{i j k}$ for all k, that is $\mathcal{O}\left(n^{1-\gamma}\right)$ many times. Worse yet is the case where a triangle exists in $G_{i}=\left(\ell_{i}, E_{i}\right)$ where it will be found $\mathcal{O}\left(n^{2(1-\gamma)}\right)$ times. However, in both cases the total number of rediscoveries of the same triangle does not affect the asymptotic complexity of this approach. Indeed in the $\ell_{i j}$ case this number is the product $\mathcal{O}\left(n^{2(1-\gamma)}\right) \cdot \mathcal{O}\left(n^{3 \gamma} \cdot(8 / 9)^{d / 2}\right) \cdot \mathcal{O}\left(n^{1-\gamma}\right)=\mathcal{O}(n)$, the product of the number of $\ell_{i j}$, the number of triangles ${ }^{9}$ per $\ell_{i j}$ and the number of rediscoveries per triangle in $\ell_{i j}$ respectively. Similarly, this value is $\mathcal{O}(n)$ in the ℓ_{i} case and as we are required to list $\mathcal{O}(n)$ triangles the asymptotic complexity remains the same.

7 Parallelising Quantum Configuration Search

In this section we deviate slightly from the k-List problem and the configuration framework and target SVP directly. On input we receive $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right\} \subset \mathbb{R}^{d}$, a basis of $\mathcal{L}(B)$. Our algorithm finds and outputs a short vector from $\mathcal{L}(B)$. As in all the algorithms described above, we will be satisfied with an approximation to the shortest vector and with heuristic analysis.

We describe an algorithm that can be implemented using a quantum circuit of width $\widetilde{\mathcal{O}}(N)$ and depth $\widetilde{\mathcal{O}}(\sqrt{N})$, where $N=2^{0.2075 d+o(d)}$. We therefore require our input and output to be less than $\widetilde{\mathcal{O}}(\sqrt{N})$, and if we were to phrase the 2 Sieve algorithm as a 2 -List problem we would not be able to read in and write out the data. Our algorithm uses poly (d) classical memory. For the analysis, we make the same heuristic assumptions as in the original 2-Sieve work of NguyenVidick NV08.

All the vectors encountered by the algorithm (except for the final measurement) are kept in quantum memory. Recall that for a pair of normalised vectors $\mathbf{x}_{1}, \mathbf{x}_{2}$ to form a "good" pair, i.e. to satisfy $\left\|\mathbf{x}_{1} \pm \mathbf{x}_{2}\right\| \leq 1$, it must hold that $\left|\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle\right| \geq \frac{1}{2}$. The algorithm described below is the quantum parallel version of 2-Sieve. Each step is analysed in the subsequent lemmas.

Several remarks about Algorithm 7.1.

1. The bound on the repetition factor on Step 6 is, as in classical 2-Sieve algorithms, appropriately set to achieve the desired norm of the returned vectors. In particular, it suffices to repeat Steps $2-5 \operatorname{poly}(d)$ times NV08.
2. In classical 2-Sieve algorithms, if \mathbf{x}_{i} does not have a match \mathbf{x}_{i}^{\prime}, it is simply discarded. Quantumly we cannot just discard an element from the system, so we keep it as the zero vector. This is why, as opposed to the classical setting, we keep our lists of exactly the same size throughout all the iterations.
3. The target norm λ is appropriately set to the desired length. The algorithm can be easily adapted to output several, say T, short vectors of $\mathcal{L}(B)$ by repeating Step $7 T$ times.
[^6]```
Algorithm 7.1 A parallel quantum algorithm for 2-Sieve
Input: \(\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right\} \subset \mathbb{R}^{d}\) a lattice basis
Output: \(\mathbf{v} \in \mathcal{L}(B)\), a short vector from \(\mathcal{L}(B)\)
 Set \(N \leftarrow 2^{0.2075 d+o(d)}\) and set \(\lambda=\Theta\left(\sqrt{d} \cdot \operatorname{det}(B)^{1 / d}\right)\) the target length.
 2: Generate a list \(L_{1} \leftarrow\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}\) of normalised lattice vectors using an efficient
 lattice sampling procedure, e.g. Kle00.
3: Construct a list \(L_{2} \leftarrow\left\{\mathbf{x}_{1}^{\prime}, \ldots, \mathbf{x}_{N}^{\prime}\right\}\) such that \(\left|\left\langle\mathbf{x}_{i}, \mathbf{x}_{i}^{\prime}\right\rangle\right| \geq 1 / 2\) for \(\mathbf{x}_{i}^{\prime} \in L_{1}\). If no
 such \(\mathbf{x}_{i}^{\prime} \in L_{1}\) exists, set \(\mathbf{x}_{i}^{\prime} \leftarrow \mathbf{0}\).
4: Construct a list \(L_{3} \leftarrow\left\{\mathbf{y}_{i}: \mathbf{y}_{i} \leftarrow \min \left\{\left\|\mathbf{x}_{i} \pm \mathbf{x}_{i}^{\prime}\right\|\right\}\right.\) for all \(\left.i \leq N\right\}\) and normalise its
 elements except for the last iteration.
5: Swap the labels \(L_{1}, L_{3}\). Reinitialise \(L_{2}\) and \(L_{3}\) to the zero state by transferring
 their contents to auxiliary memory.
6: Repeat Steps 3-5 poly (\(d\)) times.
7: Output a vector from \(L_{1}\) of Euclidean norm less than \(\lambda\).
```

Theorem 8. Given on input a lattice basis $\mathcal{L}(B)=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right\} \subset \mathbb{R}^{d}$, Algorithm 7.1 heuristically solves the shortest vector problem on $\mathcal{L}(B)$ with constant success probability. The algorithm can be implemented using a uniform family of quantum circuits of width $\widetilde{\mathcal{O}}(N)$ and depth $\widetilde{\mathcal{O}}(\sqrt{N})$, where $N=2^{0.2075 d+o(d)}$.

We prove the above theorem in several lemmas. Here we only give proof sketches and defer more detailed proofs to the full version [KMPR19, App. D]. In the first lemma we explain the process of generating a database of vectors of size $N$ having $N$ processors. The main routines, Steps $3-5$, are analysed in Lemma 2. Finally, in Step 7 we use Grover's algorithm to amplify the amplitudes of small norm vectors.

Lemma 1. Step (2) of Algorithm 7.1 can be implemented using a uniform family of quantum circuits of width $\widetilde{\mathcal{O}}(N)$ and depth poly $\log (N)$.

Lemma 2. Steps (3-5) of Algorithm 7.1 can be implemented using a uniform family of quantum circuits of width $\widetilde{\mathcal{O}}(N)$ and depth $\widetilde{\mathcal{O}}(\sqrt{N})$.

Lemma 3. Step (7) of the Algorithm 7.1 can be implemented using a uniform family of quantum circuits of width $\widetilde{\mathcal{O}}(N)$ and depth $\widetilde{\mathcal{O}}(\sqrt{N})$.

Before we present our proofs for the above lemmas, we briefly explain our computational model. We assume that each input vector $\mathbf{b}_{i}$ is encoded in $\bar{d}=$ poly $(d)$ qubits and we say that it is stored in a single register. We also consider the circuit model and assume we have at our disposal a set of elementary gates - Toffoli, and all 1-qubit unitary gates (including the Hadamard and Pauli $X$ ), i.e. a universal gate set that can be implemented efficiently. We further assume that any parallel composition of unitaries can be implemented simultaneously. For brevity, we will often want to interpret (computations consisting of) parallel processes to be running on parallel processors. We emphasise that this is inconsequential to the computation and our analysis. However, thinking this way
greatly helps to understand the physical motivation and convey the intuition behind the computation.

Proof sketch of Lemma 11. The idea is to copy the cell of registers, $|B\rangle$, encoding the basis $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right\}$ to $N$ processors, where each processor is equipped with poly $\log (N)$ qubits. The state $|B\rangle$ itself is a classical (diagonal) state made of $\bar{d}^{2}=\mathcal{O}\left(\log ^{2}(N)\right)$ qubits. To copy $B$ to all $N$ processors, it takes $\lceil\log (N)\rceil$ steps each consisting of a cascade of CNOT operations.

Each of the processors samples a single $\mathbf{x}_{i}$ using a randomised sampling algorithm, e.g. Kle00. This is an efficient classical procedure that can be implemented by a reversible circuit of poly $(d)$ depth and width. The exact same circuit can be used to realise the sampling on a quantum processor.

Each processor $i$, having computed the $\mathbf{x}_{i}$, now keeps $\mathbf{x}_{i}$ locally and also copies it to a distinguished cell L1. The state of the system can be described as

$$
\left.\left|\mathbf{x}_{1}\right\rangle_{\mathrm{P}_{1}}\left|\mathbf{x}_{2}\right\rangle_{\mathrm{P}_{2}} \ldots\left|\mathbf{x}_{N}\right\rangle_{\mathrm{P}_{N}}\left|\mathbf{x}_{1}, \mathbf{x}_{2} \ldots \mathbf{x}_{N}\right\rangle_{\mathrm{L} 1} \mid \text { ancilla }\right\rangle
$$

where $\mathrm{P}_{i}$ is the register in possession of processor $i$. The total depth of the circuit is $\mathcal{O}(\log (N))$ to copy plus poly $\log (N)$ to sample plus $\mathcal{O}(1)$ to copy to the list $L_{1}$. Each operation is carried out by $N$ processors and uses poly $\log (N)$ qubits. Thus the total depth of a quantum circuit implementing Step (2) is poly $\log (N)$ and its width is $\widetilde{\mathcal{O}}(N)$.

Proof sketch of Lemma2. The key idea to construct the list $L_{2}$ is to let each processor $\mathrm{P}_{i}$, which already has a copy of $\left|\mathbf{x}_{i}\right\rangle, \mathbf{x}_{i} \in L_{1}$, search through $L_{1}$ (now stored in the distinguished cell L1) to find a vector $\mathbf{x}_{i}^{\prime}$ such that $\left|\left\langle\mathbf{x}_{i}, \mathbf{x}_{i}^{\prime}\right\rangle\right| \geq 1 / 2$ (if no such $\mathbf{x}_{i}^{\prime} \in L_{1}$, set $\mathbf{x}_{i}^{\prime}=0$ ). The key ingredient is to parallelise this search, i.e. let all processors do the search at the same time. The notion of parallelisation is however only a (correct) interpretation of the operational meaning of the unitary transformations. It is important to stress that we make no assumptions about how data structures are stored, accessed and processed, beyond what is allowed by the axioms of quantum theory and the framework of the circuit model.

For each processor $i$, we define a function $f_{i}(\mathbf{y})=1$ if $\left|\left\langle\mathbf{x}_{i}, \mathbf{y}\right\rangle\right| \geq 1 / 2$ and 0 otherwise; and let $W_{f}$ and $D_{f}$ be the maximal width and depth of a unitary implementing any $f_{i}$. It is possible to implement a quantum circuit of $\widetilde{\mathcal{O}}\left(N \cdot W_{f}\right)$ width and $\widetilde{\mathcal{O}}\left(\sqrt{N} D_{f}\right)$ depth that can in parallel find solutions to all $f_{i}, 1 \leq i \leq$ $N\left[\mathrm{BBG}^{+} 13\right.$. This quantum circuit searches through the list in parallel, i.e. each processor can simultaneously access the memory and search. Note, $f_{i}$ is really a reduced transformation. The "purification" of $f_{i}$ is a two parameter function $f: L_{1} \times L_{1} \rightarrow\{0,1\}$. However, in each processor $i$, one of the inputs is "fixed and hardcoded" to be $\mathbf{x}_{i}$. The function $f$ itself admits an efficient implementation in the size of the inputs, since this is the inner product function and also has a classical reversible circuit consisting of Toffoli and NOT gates. Once the search is done, it is expected with probability greater than $1-2^{-\Omega(d)}$ that each processor $i$ will have found an index $j_{i}$, s.t. $\left|\left\langle\mathbf{x}_{i}, \mathbf{x}_{j_{i}}\right\rangle\right| \geq 1 / 2, \mathbf{x}_{i}, \mathbf{x}_{j_{i}} \in L_{1}$. One can always check if the processor found a solution, otherwise the search can be repeated
a constant number of times. If none of the searches found a "good" $j_{i}$, we set $\mathbf{x}_{j_{i}}=\mathbf{0}$. Else, if any of the searches succeed, we keep that index $j_{i}$.

At this point we have a virtual list $L_{2}$, which consists of all indices $j_{i}$. We create a list $L_{3}$ in another distinguished cell, by asking each processor to compute $\mathbf{y}_{i}^{+}=\mathbf{x}_{i}+\mathbf{x}_{j_{i}}$ and $\mathbf{y}_{i}^{-}=\mathbf{x}_{i}-\mathbf{x}_{j_{i}}$ and copy into the $i^{\text {th }}$ register the shorter of $\mathbf{y}_{i}^{+}$and $\mathbf{y}_{i}^{-}$, in the Euclidean length. The state of the system now is,

$$
\left.\left|\mathbf{x}_{1}\right\rangle_{P 1} \ldots\left|\mathbf{x}_{N}\right\rangle_{P N}\left|\mathbf{y}_{1}\right\rangle_{P 1} \ldots\left|\mathbf{y}_{L}\right\rangle_{P N}\left|\mathbf{x}_{1} \ldots \mathbf{x}_{N}\right\rangle_{L 1}\left|\mathbf{y}_{1} \ldots \mathbf{y}_{N}\right\rangle_{L 3} \mid \text { ancilla }\right\rangle .
$$

A swap between qubits say, $S$ and $R$, is just $C N O T_{S R} \circ C N O T_{R S} \circ C N O T_{S R}$, and thus the Swap in Step 5 between $L_{1}$ and $L_{2}$ can be done with a depth 3 circuit. Finally reinitialise the lists $L_{2}$ and $L_{3}$ by swapping them with two registers of equal size that are all initialised to zero. This unloads the data from the main memories ( $\mathrm{L} 2, \mathrm{~L} 3$ ) and enables processors to reuse them for the next iteration.

The total depth of the circuit is $\widetilde{\mathcal{O}}(\sqrt{N})$ (to perform the parallel search for "good" indices $j_{i}$ ), poly $\log N$ (to compute the elements of the new list $L_{3}$ and copy them), and $\mathcal{O}(1)$ (to swap the content in memory registers). Thus, in total we have constructed a circuit of $\widetilde{\mathcal{O}}(\sqrt{N})$ depth and $\widetilde{\mathcal{O}}(N)$ width.

Proof sketch of Lemma 图. Given a database of vectors of size $N$ and a norm threshold $\lambda$, finding a vector from the database of Euclidean norm less than $\lambda$ amounts to Grover's search over the database. It can be done with a quantum circuit of depth $\widetilde{\mathcal{O}}(\sqrt{N})$. It could happen that the threshold $\lambda$ is set to be too small, in which case Grover's search returns a random element form the database. In that case, we repeat the whole algorithm with an increased value for $\lambda$. After $\Theta(1)$ repetitions, we heuristically obtain a short vector from $\mathcal{L}(B)$.

Proof sketch of Theorem 8. As established from the lemmas above, each of Step 2, Steps 3-5 and Step 7 can be realised using a family of quantum circuits of depth and width (at most) $\widetilde{\mathcal{O}}(\sqrt{N})$ and $\widetilde{\mathcal{O}}(N)$ respectively. However, Steps 3-5 run $\mathcal{O}(\operatorname{poly}(d))$ times, thus the total depth of the circuit now goes up by at most a multiplicative factor of $\mathcal{O}(\operatorname{poly}(d))=\mathcal{O}($ poly $\log (N))$. The total depth and width of a circuit implementing Algorithm 7.1 remains as $\widetilde{\mathcal{O}}(\sqrt{N})$ and $\widetilde{\mathcal{O}}(N)$ respectively as $\widetilde{\mathcal{O}}$ notation suppresses subexponential factors.

### 7.1 Distributed Configuration Search: Classical Analogue

Algorithm 7.1 should be compared with a classical model where there are $N=$ $2^{0.2075 d+o(d)}$ computing nodes, each equipped with poly $(d)$ memory. It suffices for these nodes to have a nearest neighbour architecture, where node $i$ is connected to nodes $i-1$ and $i+1$, and arranged like beads in a necklace. We cost one time unit for poly $(d)$ bits sent from any node to an adjacent node. A comparable distributed classical algorithm would be where each node, $i$, receives the basis $B$ and samples a vector $\mathbf{v}_{i}$. In any given round, node $i$ sends $\tilde{\mathbf{v}}_{i}$ to node $i+1$ and receives $\tilde{\mathbf{v}}_{i-1}$ from node $i-1$ (in the first round $\tilde{\mathbf{v}}_{i}:=\mathbf{v}_{i}$ ). Then each node checks if the vector pair $\left(\mathbf{v}_{i}, \tilde{\mathbf{v}}_{i-1}\right)$ gives a shorter sum or difference. If yes, it
computes $\mathbf{v}_{i}^{(2)}=\min \left\{\mathbf{v}_{i} \pm \tilde{\mathbf{v}}_{i-1}\right\}$ and sets $\tilde{\mathbf{v}}_{i}:=\mathbf{v}_{i-1}$. After $N$ rounds every node $i$ has compared their vector $\mathbf{v}_{i}$ with all $N$ vectors sampled. The vectors $\mathbf{v}_{i}$ can be discarded and the new round begins with $\mathbf{v}_{i}^{(2)}$ being the new vector. The process is repeated poly $(d)$ many times leading to $\mathcal{O}(N) \cdot \operatorname{poly}(d)$ time steps. Thus this distributed algorithm needs $\widetilde{\mathcal{O}}(N)=2^{0.2075 d+o(d)}$ time.

Acknowledgements. Most of this work was done while EK was at ENS de Lyon, supported by ERC Starting Grant ERC-2013-StG-335086-LATTAC and by the European Union PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant 780701). EM is supported by the Swedish Research Counsel (grant 2015-04528) and the Swedish Foundation for Strategic Research (grant RIT17-0005). EWP is supported by the EPSRC and the UK government (grant EP/P009301/1). SRM is supported by the Clarendon Scholarship, Google-DeepMind Scholarship and Keble Sloane-Robinson Award.

We are grateful to the organisers of the Oxford Post-Quantum Cryptography Workshop held at the Mathematical Institute, University of Oxford, March 18-22, 2019, for arranging the session on Quantum Cryptanalysis, where this work began. We would like to acknowledge the fruitful discussions we had with Gottfried Herold during this session.

Finally, we would like to thank the AsiaCrypt'19 reviewers, whose constructive comments helped to improve the quality of this paper.

## References

AD97. Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In STOC '97, pages 284-293, 1997.
$\mathrm{ADH}^{+}$19. Martin Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn Postlethwaite, and Marc Stevens. The general sieve kernel and new records in lattice reduction. In EUROCRYPT 2019, pages 717-746, 2019.
ADRSD15. Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah StephensDavidowitz. Solving the shortest vector problem in $2^{n}$ time using discrete gaussian sampling: Extended abstract. In STOC '15, pages 733-742, 2015.
AGJO $^{+}$15. Srinivasan Arunachalam, Vlad Gheorghiu, Tomas Jochym-O'Connor, Michele Mosca, and Priyaa Varshinee Srinivasan. On the robustness of bucket brigade quantum RAM. New Journal of Physics, 17(12):123010, dec 2015.
AKS01. Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, STOC '01, pages 601-610, 2001.
ANS18. Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen. Quantum lattice enumeration and tweaking discrete pruning. In Advances in Cryptology ASIACRYPT 2018, pages 405-434, 2018.
$\mathrm{BBG}^{+}$13. Robert Beals, Stephen Brierley, Oliver Gray, Aram W Harrow, Samuel Kutin, Noah Linden, Dan Shepherd, and Mark Stather. Efficient distributed quantum computing. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469(2153):20120686, 2013.

BBHT98. Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quantum searching. Fortschritte der Physik, 46(4-5):493-505, 1998.
BDGL16. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor searching with applications to lattice sieving. In Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '16, pages 10-24, 2016.
BdWD $^{+}$01. Harry Buhrman, Ronald de Wolf, Christoph Dürr, Mark Heiligman, Peter Høyer, Frédéric Magniez, and Miklos Santha. Quantum algorithms for element distinctness. In Proceedings of the 16th Annual Conference on Computational Complexity, CCC '01, pages 131-137, Washington, DC, USA, 2001. IEEE Computer Society.
BGJ14. Anja Becker, Nicolas Gama, and Antoine Joux. A sieve algorithm based on overlattices. LMS Journal of Computation and Mathematics, 17(A):49-70, 2014.

BHMT02. Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification and estimation. Quantum Computation and Quantum Information: A Millennium Volume, 305:53-74, 2002. Earlier version in arxiv:quant-ph/0005055.
BHT97. Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum algorithm for the collision problem. ACM SIGACT News (Cryptology Column), 28, 1997.
BLS16. Shi Bai, Thijs Laarhoven, and Damien Stehlé. Tuple lattice sieving. LMS Journal of Computation and Mathematics, 19:146-162, 2016.
CCL17. Yanlin Chen, Kai-Min Chung, and Ching-Yi Lai. Space-efficient classical and quantum algorithms for the shortest vector problem. arXiv e-prints, Aug 2017.
CDW17. Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short stickelberger class relations and application to ideal-SVP. In Advances in Cryptology EUROCRYPT 2017, pages 324-348, 2017.
DRS14. D. Dadush, O. Regev, and N. Stephens-Davidowitz. On the closest vector problem with a distance guarantee. In 2014 IEEE 29th Conference on Computational Complexity (CCC), pages 98-109, June 2014.
Duc18. Léo Ducas. Shortest vector from lattice sieving: A few dimensions for free. In Advances in Cryptology - EUROCRYPT 2018, pages 125-145, 2018.
Gal14. F. L. Gall. Improved quantum algorithm for triangle finding via combinatorial arguments. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 216-225, Oct 2014.
GLM08. Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access memory. Phys. Rev. Lett., 100:160501, Apr 2008.
GNR10. Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using extreme pruning. In Advances in Cryptology-EUROCRYPT 2010, pages 257-278, 2010.
Gro96. Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC '96, pages 212-219, 1996.
HK17. Gottfried Herold and Elena Kirshanova. Improved algorithms for the approximate $k$-list problem in Euclidean norm. In PKC 2017, pages 16-40, 2017.

HKL18. Gottfried Herold, Elena Kirshanova, and Thijs Laarhoven. Speed-ups and time-memory trade-offs for tuple lattice sieving. In Public-Key Cryptography - PKC 2018, pages 407-436, 2018.

Kan83. Ravi Kannan. Improved algorithms for integer programming and related lattice problems. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC '83, pages 193-206, 1983.
Kle00. Philip N. Klein. Finding the closest lattice vector when it's unusually close. In SODA, pages 937-941, 2000.
KLM07. Phillip Kaye, Raymond Laflamme, and Michele Mosca. An introduction to quantum computing. Oxford University Press, 2007.
KMPR19. Elena Kirshanova, Erik Mårtensson, Eamonn W. Postlethwaite, and Subhayan Roy Moulik. Quantum algorithms for the approximate $k$-list problem and their application to lattice sieving. Cryptology ePrint Archive, Report 2019/1016, 2019. https://eprint.iacr.org/2019/1016.
Kup13. Greg Kuperberg. Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem. In TQC-2013, pages 20-34, 2013.
Laa15. Thijs Laarhoven. Search problems in cryptography. PhD thesis, Eindhoven University of Technology, 2015.
LGN17. François Le Gall and Shogo Nakajima. Quantum algorithm for triangle finding in sparse graphs. Algorithmica, 79(3):941-959, Nov 2017.
LMvdP15. Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Finding shortest lattice vectors faster using quantum search. Designs, Codes and Cryptography, 77(2):375-400, Dec 2015.
Map. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario. Standard worksheet interface, Maple 2016.0, feb. frm[o]-7 2016.
Mon18. Ashley Montanaro. Quantum-walk speedup of backtracking algorithms. Theory of Computing, 14(15):1-24, 2018.
MV10. Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms for the shortest vector problem. In Proceedings of the Twentyfirst Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '10, pages 1468-1480, 2010.
NV08. Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the shortest vector problem are practical. Journal of Mathematical Cryptology, pages 181-207, 2008.
PMHS19. Alice Pellet-Mary, Guillaume Hanrot, and Damien Stehlé. Approx-SVP in ideal lattices with pre-processing. In Advances in Cryptology - EUROCRYPT 2019, pages 685-716, 2019.
Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, STOC '05, pages 84-93, 2005.
Reg09. Oded Regev. Lecture notes: Lattices in computer science. http:// www.cims.nyu.edu/~regev/teaching/lattices_fall_2009/index.html 2009. Accessed: 30-04-2019.

TKH18. Tadanori Teruya, Kenji Kashiwabara, and Goichiro Hanaoka. Fast lattice basis reduction suitable for massive parallelization and its application to the shortest vector problem. In PKC 2018, pages 437-460, 2018.


[^0]:    * The full version of this article can be found at https://eprint.iacr.org/2019/1016

[^1]:    ${ }^{1}$ For some families of lattices, like ideal lattices, there exist quantum algorithms that solve a variant of SVP faster than classical algorithms, see CDW17|PMHS19. In this work, we consider arbitrary lattices.

[^2]:    ${ }^{2}$ This means that the complexity of the algorithm is measured by the number of oracle calls to the adjacency matrix of a graph.

[^3]:    ${ }^{3}$ The code is available at https://github.com/ElenaKirshanova/QuantumSieve

[^4]:    ${ }^{4}$ This is not necessary but it enables us to efficiently create superpositions $\left|\Psi_{L_{i}}\right\rangle$ using Hadamard gates. Since our lists $L_{i}$ are of sizes $2^{c d+o(d)}$ for a large $d$ and a constant $\mathrm{c}<1$, this condition is easy to satisfy by rounding $\mathrm{c} d$.
    ${ }^{5}$ This follows by multiplying the sizes of the lists $L_{i}\left(\mathbf{x}_{1}, \ldots \mathbf{x}_{i-1}\right)$ for all $2 \leq i \leq k$.

[^5]:    ${ }^{6}$ As we are in the balanced configuration case, and our input lists are identical, Theorem 5 has no dependence on $j$.
    ${ }^{7}$ Note that this differs from BdWD ${ }^{+} 01$ as in general either of Step 1 or 2 may dominate and we also make use of the existence of $\Theta(n)$ triangles.

[^6]:    ${ }^{9}$ Given that $\left|\ell_{i}\right|=n^{\gamma},\left|\ell_{i j}\right|=2 n^{\gamma},\left|\ell_{i j k}\right|=3 n^{\gamma}$ the expected numbers of triangles differ only by a constant.

