14 research outputs found

    Ablative therapy for people with localised prostate cancer : a systematic review and economic evaluation

    Get PDF
    The research reported in this issue of the journal was funded by the HTA programme as project number 10/136/01. The contractual start date was in April 2012. The draft report began editorial review in October 2013 and was accepted for publication in April 2014. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors’ report and would like to thank the reviewers for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report. Acknowledgements We thank l the people recruited from the local UCAN for providing valuable consumer insight and advice through their participation as members of the project focus group: - Mark Emberton (Professor of Interventional Oncology), Damian Greene (consultant urologist), Axel Heidenreich (Professor and Director of Department of Urology), Christoph von Klot (specialist in brachytherapy), Roger Kockelbergh (BAUS chairman and Clinical Director of Urology) and Axel Merserburger (Deputy Clinical Director of Urology and Urologic Oncology) for providing their clinical expertise as members of the project advisory group - Edgar Paez (consultant urologist) and Gill Lawrence (Head of Radiotherapy Physics) for providing a list of staff time by grade and specialty involved in EBRT - Debbie Bennett (Radiotherapy Service Manager) for providing estimates for the expected number of uses for EBRT - Ian Pedley (clinical director/clinical oncologist) and Gill Lawrence for providing a list of all resource inputs relevant to brachytherapy - Steve Locks (Consultant Clinical Scientist in Radiotherapy) for providing a list of reusable equipment and consumables used during brachytherapy, along with their unit costs - Sue Asterling (urology research nurse) and Mark Kelly (Acting Divisional General Manager – Theatres) for providing a list of all resource inputs relevant to cryotherapy - Lara Kemp for providing secretarial support. The Health Services Research Unit is core funded by the Chief Scientist Office of the Scottish Government Health Directorates.Peer reviewedPublisher PD

    Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report on the first measurement of the triangular v3v_3, quadrangular v4v_4, and pentagonal v5v_5 charged particle flow in Pb-Pb collisions at 2.76 TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show that the triangular flow can be described in terms of the initial spatial anisotropy and its fluctuations, which provides strong constraints on its origin. In the most central events, where the elliptic flow v2v_2 and v3v_3 have similar magnitude, a double peaked structure in the two-particle azimuthal correlations is observed, which is often interpreted as a Mach cone response to fast partons. We show that this structure can be naturally explained from the measured anisotropic flow Fourier coefficients.Comment: 10 pages, 4 figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/387

    Ablative therapy for people with localised prostate cancer: a systematic review and economic evaluation

    Full text link

    Torsion of the wandering spleen

    No full text

    The integrated Earth system model version 1: Formulation and functionality

    Get PDF
    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human-Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human-Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community
    corecore