577 research outputs found

    The visible and near-infrared optical absorption coefficient spectrum of Parylene C measured by transmitting light through thin films in liquid filled cuvettes

    Get PDF
    Parylene C (PPXC) is a polymer deposited from the gas phase to form optically clear thin films used in devices including waveguides and sensors. The performance of these devices depends on the visible and near infrared absorption coefficient of PPXC. However, the absorption coefficient is difficult to measure. This is because PPXC films are typically too thin to exhibit detectable absorption in conventional transmittance measurements. To address this challenge, a method involving measuring the transmittance of multiple films immersed together in a liquid filled cuvette was devised. This increased the sensitivity to absorption by increasing the path length in PPXC, while also minimizing reflections and surface losses. Using 200-500 µm thick films, this method was applied to measure the absorption coefficient of PPXC at wavelengths in the range 330-3300 nm. The coefficient was found to vary spectrally by more than two orders of magnitude from 0.025 mm-1 at 1562 nm to 7.7 mm-1 at 3262 nm. These absorption measurements could aid the design of PPXC based sensors and waveguides. The method could be useful for measuring the absorption coefficient of other thin, low-loss materials, particularly those for which it is challenging to obtain thick samples such as other polymers deposited from the gas phase in a similar manner to PPXC

    Associations between health-related quality of life, physical function and fear of falling in older fallers receiving home care

    Get PDF
    Falls and injuries in older adults have significant consequences and costs, both personal and to society. Although having a high incidence of falls, high prevalence of fear of falling and a lower quality of life, older adults receiving home care are underrepresented in research on older fallers. The objective of this study is to determine the associations between health-related quality of life (HRQOL), fear of falling and physical function in older fallers receiving home care

    Topoisomerase IIβ Activates a Subset of Neuronal Genes that Are Repressed in AT-Rich Genomic Environment

    Get PDF
    DNA topoisomerase II (topo II) catalyzes a strand passage reaction in that one duplex is passed through a transient brake or gate in another. Completion of late stages of neuronal development depends on the presence of active β isoform (topo IIβ). The enzyme appears to aid the transcriptional induction of a limited number of genes essential for neuronal maturation. However, this selectivity and underlying molecular mechanism remains unknown. Here we show a strong correlation between the genomic location of topo IIβ action sites and the genes it regulates. These genes, termed group A1, are functionally biased towards membrane proteins with ion channel, transporter, or receptor activities. Significant proportions of them encode long transcripts and are juxtaposed to a long AT-rich intergenic region (termed LAIR). We mapped genomic sites directly targeted by topo IIβ using a functional immunoprecipitation strategy. These sites can be classified into two distinct classes with discrete local GC contents. One of the classes, termed c2, appears to involve a strand passage event between distant segments of genomic DNA. The c2 sites are concentrated both in A1 gene boundaries and the adjacent LAIR, suggesting a direct link between the action sites and the transcriptional activation. A higher-order chromatin structure associated with AT richness and gene poorness is likely to serve as a silencer of gene expression, which is abrogated by topo IIβ releasing nearby genes from repression. Positioning of these genes and their control machinery may have developed recently in vertebrate evolution to support higher functions of central nervous system

    New Human Papilloma Virus E2 Transcription Factor Mimics: A Tripyrrole-Peptide Conjugate with Tight and Specific DNA-Recognition

    Get PDF
    BACKGROUND: Human papillomavirus (HPV) is the main causative agent of cervical cancer, particularly high risk strains such us HPV-16, -18 and -31. The viral encoded E2 protein acts as a transcriptional modulator and exerts a key role in viral DNA replication. Thus, E2 constitutes an attractive target for developing antiviral agents. E2 is a homodimeric protein that interacts with the DNA target through an α-helix of each monomer. However, a peptide corresponding to the DNA recognition helix of HPV-16 E2 binds DNA with lower affinity than its full-length DNA binding domain. Therefore, in an attempt to promote the DNA binding of the isolated peptide, we have designed a conjugate compound of the E2 α-helix peptide and a derivative of the antibiotic distamycin, which involves simultaneous minor- and major-groove interactions. METHODOLOGY/PRINCIPAL FINDINGS: An E2 α-helix peptide-distamycin conjugate was designed and synthesized. It was characterized by NMR and CD spectroscopy, and its DNA binding properties were investigated by CD, DNA melting and gel shift experiments. The coupling of E2 peptide with distamycin does not affect its structural properties. The conjugate improves significantly the affinity of the peptide for specific DNA. In addition, stoichiometric amounts of specific DNA increase meaningfully the helical population of the peptide. The conjugate enhances the DNA binding constant 50-fold, maintaining its specificity. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that peptide-distamycin conjugates are a promising tool to obtain compounds that bind the E2 target DNA-sequences with remarkable affinity and suggest that a bipartite major/minor groove binding scaffold can be a useful approach for therapeutic treatment of HPV infection

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Structural Model of the Rev Regulatory Protein from Equine Infectious Anemia Virus

    Get PDF
    Rev is an essential regulatory protein in the equine infectious anemia virus (EIAV) and other lentiviruses, including HIV-1. It binds incompletely spliced viral mRNAs and shuttles them from the nucleus to the cytoplasm, a critical prerequisite for the production of viral structural proteins and genomic RNA. Despite its important role in production of infectious virus, the development of antiviral therapies directed against Rev has been hampered by the lack of an experimentally-determined structure of the full length protein. We have used a combined computational and biochemical approach to generate and evaluate a structural model of the Rev protein. The modeled EIAV Rev (ERev) structure includes a total of 6 helices, four of which form an anti-parallel four-helix bundle. The first helix contains the leucine-rich nuclear export signal (NES). An arginine-rich RNA binding motif, RRDRW, is located in a solvent-exposed loop region. An ERLE motif required for Rev activity is predicted to be buried in the core of modeled structure where it plays an essential role in stabilization of the Rev fold. This structural model is supported by existing genetic and functional data as well as by targeted mutagenesis of residues predicted to be essential for overall structural integrity. Our predicted structure should increase understanding of structure-function relationships in Rev and may provide a basis for the design of new therapies for lentiviral diseases

    Skp is a multivalent chaperone of outer membrane proteins

    Get PDF
    The trimeric chaperone Skp sequesters outer-membrane proteins (OMPs) within a hydrophobic cage, thereby preventing their aggregation during transport across the periplasm in Gram-negative bacteria. Here, we studied the interaction between Escherichia coli Skp and five OMPs of varying size. Investigations of the kinetics of OMP folding revealed that higher Skp/OMP ratios are required to prevent the folding of 16-stranded OMPs compared with their 8-stranded counterparts. Ion mobility spectrometry–mass spectrometry (IMS–MS) data, computer modeling and molecular dynamics simulations provided evidence that 10- to 16-stranded OMPs are encapsulated within an expanded Skp substrate cage. For OMPs that cannot be fully accommodated in the expanded cavity, sequestration is achieved by binding of an additional Skp trimer. The results suggest a new mechanism for Skp chaperone activity involving the coordination of multiple copies of Skp in protecting a single substrate from aggregation

    Deciphering the Preference and Predicting the Viability of Circular Permutations in Proteins

    Get PDF
    Circular permutation (CP) refers to situations in which the termini of a protein are relocated to other positions in the structure. CP occurs naturally and has been artificially created to study protein function, stability and folding. Recently CP is increasingly applied to engineer enzyme structure and function, and to create bifunctional fusion proteins unachievable by tandem fusion. CP is a complicated and expensive technique. An intrinsic difficulty in its application lies in the fact that not every position in a protein is amenable for creating a viable permutant. To examine the preferences of CP and develop CP viability prediction methods, we carried out comprehensive analyses of the sequence, structural, and dynamical properties of known CP sites using a variety of statistics and simulation methods, such as the bootstrap aggregating, permutation test and molecular dynamics simulations. CP particularly favors Gly, Pro, Asp and Asn. Positions preferred by CP lie within coils, loops, turns, and at residues that are exposed to solvent, weakly hydrogen-bonded, environmentally unpacked, or flexible. Disfavored positions include Cys, bulky hydrophobic residues, and residues located within helices or near the protein's core. These results fostered the development of an effective viable CP site prediction system, which combined four machine learning methods, e.g., artificial neural networks, the support vector machine, a random forest, and a hierarchical feature integration procedure developed in this work. As assessed by using the hydrofolate reductase dataset as the independent evaluation dataset, this prediction system achieved an AUC of 0.9. Large-scale predictions have been performed for nine thousand representative protein structures; several new potential applications of CP were thus identified. Many unreported preferences of CP are revealed in this study. The developed system is the best CP viability prediction method currently available. This work will facilitate the application of CP in research and biotechnology
    corecore