432 research outputs found

    Quantitation of angiogenesis in vitro induced by VEGF-A and FGF-2 in two different human endothelial cultures : an all-in-one assay

    Get PDF
    Angiogenic therapy is considered to be a promising tool for treatment of ischemic diseases. Many in vivo and in vitro assays have been developed to identify potential proangiogenic drugs and to investigate their mode of action. However, until now no validated system exists that would allow quantitation of angiogenesis in vitro in only one assay. Here, a previously established all-in-one in vitro assay based on staging of the angiogenic cascade was validated by quantitation of the effects of the known proangiogenic factors VEGF-A and FGF-2. Both growth factors were applied separately or in combination to human endothelial cell cultures derived from the heart and the foreskin, and angiogenesis was quantitated over 30 days of culture. Additionally, gene expression of VEGFR-1, VEGFR-2 and FGFR-1 at 3, 10, 20 or 40 days of cultivation was quantitated by RT-qPCR. In both cultures, VEGF-A as well as FGF-2 induced a run through all defined stages of angiogenesis in vitro. Application of VEGF-A only led to formation of irregular globular endothelial structures, while FGF-2 resulted in development of regular capillary-like structures. Quantitation of the angiogenic effects of VEGF-A and transcripts of VEGFR-1 and VEGFR-2 showed that a high VEGFR-1/VEGFR-2 ratio evoked deceleration of angiogenesis

    Size-dependent decoherence of excitonic states in semiconductor microcrystallites

    Full text link
    The size-dependent decoherence of the exciton states resulting from the spontaneous emission is investigated in a semiconductor spherical microcrystallite under condition aBR0λa_{B}\ll R_{0}\leq\lambda. In general, the larger size of the microcrystallite corresponds to the shorter coherence time. If the initial state is a superposition of two different excitonic coherent states, the coherence time depends on both the overlap of two excitonic coherent states and the size of the microcrystallite. When the system with fixed size is initially in the even or odd coherent states, the larger average number of the excitons corresponds to the faster decoherence. When the average number of the excitons is given, the bigger size of the microcrystallite corresponds to the faster decoherence. The decoherence of the exciton states for the materials GaAs and CdS is numerically studied by our theoretical analysis.Comment: 4 pages, two figure

    On quantum teleportation with beam-splitter-generated entanglement

    Get PDF
    Following the lead of Cochrane, Milburn, and Munro [Phys. Rev. A {\bf 62}, 062307 (2000)], we investigate theoretically quantum teleportation by means of the number-sum and phase-difference variables. We study Fock-state entanglement generated by a beam splitter and show that two-mode Fock-state inputs can be entangled by a beam splitter into close approximations of maximally entangled eigenstates of the phase difference and the photon-number sum (Einstein-Podolsky-Rosen -- EPR -- states). Such states could be experimentally feasible with on-demand single-photon sources. We show that the teleportation fidelity can reach near unity when such ``quasi-EPR'' states are used as the quantum channel.Comment: 7 pages (two-column), 7 figures, submitted to Phys. Rev. A. Text unmodified, postscript error correcte

    Emergence of quasi-metallic state in disordered 2D electron gas due to strong interactions

    Full text link
    The interrelation between disorder and interactions in two dimensional electron liquid is studied beyond weak coupling perturbation theory. Strong repulsion significantly reduces the electronic density of states on the Fermi level. This makes the electron liquid more rigid and strongly suppresses elastic scattering off impurities. As a result the weak localization, although ultimately present at zero temperature and infinite sample size, is unobservable at experimentally accessible temperature at high enough densities. Therefore practically there exists a well defined metallic state. We study diffusion of electrons in this state and find that the diffusion pole is significantly modified due to "mixture" with static photons similar to the Anderson - Higgs mechanism in superconductivity. As a result several effects stemming from the long range nature of diffusion like the Aronov - Altshuler logarithmic corrections to conductivity are less pronounced.Comment: to appear in Phys. Rev.

    A power-splitting relaying protocol for wireless energy harvesting and information processing in NOMA systems

    Get PDF
    Non-orthogonal multiple access (NOMA) along with cooperative communications have been recognized as promising candidates for the fifth generation (5G) wireless networks and have attracted many researchers. Every networked device however has its own limited power supply. To this extent, this paper investigates a power-splitting relaying (PSR) protocol for wireless energy harvesting and information processing in the NOMA systems to prolong the lifetime of the energy-constrained relay nodes in wireless networks so as to avail the ambient radio-frequency (RF) signal as well as to simultaneously harvest the energy and process the information. Decode-and-forward relaying is employed at the relay node where the energy from the received RF signal is harvested and exploited to forward the information to the destination. Specifically, the outage probability and ergodic rate of the PSR protocol are derived to realize the impacts of energy harvesting time, energy harvesting efficiency, power splitting ratio, source data rate, and the distance between nodes. It is also shown that an increased energy harvesting efficiency results in an enhanced performance and an outperformance in terms of the energy efficiency is achieved with the employment of the NOMA when compared to the conventional orthogonal multiple access. Numerical results are provided to verify the findings

    Tight-binding parameters for charge transfer along DNA

    Full text link
    We systematically examine all the tight-binding parameters pertinent to charge transfer along DNA. The π\pi molecular structure of the four DNA bases (adenine, thymine, cytosine, and guanine) is investigated by using the linear combination of atomic orbitals method with a recently introduced parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are discussed and then used for calculating the corresponding wavefunctions of the two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO and LUMO energies of the bases are in good agreement with available experimental values. Our results are then used for estimating the complete set of charge transfer parameters between neighboring bases and also between successive base-pairs, considering all possible combinations between them, for both electrons and holes. The calculated microscopic quantities can be used in mesoscopic theoretical models of electron or hole transfer along the DNA double helix, as they provide the necessary parameters for a tight-binding phenomenological description based on the π\pi molecular overlap. We find that usually the hopping parameters for holes are higher in magnitude compared to the ones for electrons, which probably indicates that hole transport along DNA is more favorable than electron transport. Our findings are also compared with existing calculations from first principles.Comment: 15 pages, 3 figures, 7 table

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters
    corecore