42 research outputs found

    Power Boosts for Cluster Tests

    Full text link
    Abstract. Gene cluster significance tests that are based on the num-ber of genes in a cluster in two genomes, and how compactly they are distributed, but not their order, may be made more powerful by the ad-dition of a test component that focuses solely on the similarity of the ordering of the common genes in the clusters in the two genomes. Here we suggest four such tests, compare them, and investigate one of them, the maximum adjacency disruption criterion, in some detail, analytically and through simulation.

    Assessing the viability of successful reconstruction of the dynamics of dark energy using varying fundamental couplings

    Get PDF
    We assess the viability of successful reconstruction of the evolution of the dark energy equation of state using varying fundamental couplings, such as the fine structure constant or the proton-to-electron mass ratio. We show that the same evolution of the dark energy equation of state parameter with cosmic time may be associated with arbitrary variations of the fundamental couplings. Various examples of models with the same (different) background evolution and different (the same) time variation of fundamental couplings are studied in the letter. Although we demonstrate that, for a broad family of models, it is possible to redefine the scalar field in such a way that its dynamics is that of a standard quintessence scalar field, in general such redefinition leads to the breakdown of the linear relation between the scalar field and the variation of fundamental couplings. This implies that the assumption of a linear coupling is not sufficient to guarantee a successful reconstruction of the dark energy dynamics and consequently additional model dependent assumptions about the scalar field responsible for the dark energy need to be made.Comment: 7 pages, 2 figures, published versio

    The Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel’dovich Galaxy Clusters

    Get PDF
    We present a catalog of 4195 optically confirmed Sunyaev–Zel'dovich (SZ) selected galaxy clusters detected with signal-to-noise ratio >4 in 13,211 deg2 of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multifrequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008 to 2018 and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ signal versus mass-scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M500c > 3.8 × 1014 M⊙, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio >5 in maps filtered at an angular scale of 2farcm4. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ signal mass-scaling relation, such as the Dark Energy Survey (4566 deg2), the Hyper Suprime-Cam Subaru Strategic Program (469 deg2), and the Kilo Degree Survey (825 deg2). We highlight some noteworthy objects in the sample, including potentially projected systems, clusters with strong lensing features, clusters with active central galaxies or star formation, and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    The Physics of the B Factories

    Get PDF

    Clinical trials on diabetic nephropathy: A cross-sectional analysis.

    No full text
    Introduction: Treatment options and decisions are often based on the results of clinical trials. We have evaluated the public availability of results from completed, registered phase III clinical trials on diabetic nephropathy and current treatment options. Methods: This was a cross-sectional analysis in which STrengthening the Reporting of OBservational studies in Epidemiology criteria were applied for design and analysis. In June 2017, 34 completed phase III clinical trials on diabetic nephropathy in the ClinicalTrials. gov registry were identified and matched to publications in the ClinicalTrials.gov registry and to those in the PubMed and Google Scholar databases. If no publication was identified, the principal investigator was contacted. The ratio of published and non-published studies was calculated. Various parameters, including study design, drugs, and comparators provided, were analyzed. Results: Drugs/supplements belonged to 26 different categories of medications, with the main ones being angiotensin-converting enzyme inhibitors, angiotensin-II receptors blockers, and dipeptidyl-peptidase-4-inhibitors. Among the trials completed before 2016 (n = 32), 22 (69%) were published, and ten (31%) remained unpublished. Thus, data on 11 different interventions and more than 1000 patients remained undisclosed. Mean time to publication was 26.5 months, which is longer than the time constrictions imposed by the U.S. Food and Drug Administration Amendments Act. Most trials only showed weak effects on micro- and macroalbuminuria, with an absolute risk reduction of 1.0 and 0.3%, respectively, and the number needed to treat varied between 91 and 333, without any relevant effect on end-stage-renal disease by intensive glucose-lowering treatment. Comparison of the results, however, was difficult since study design, interventions, and the renal outcome parameters vary greatly between the studies. Conclusion: Despite the financial and human resources involved and the relevance for therapeutic guidelines and clinical decisions, about one-third of phase III clinical trials on diabetic nephropathy remain unpublished. Interventions used in published trials showed a low efficacy on renal outcome. Funding: Deutsche Forschungsgemeinschaft (DFG): SFB 1118
    corecore