137 research outputs found

    Secure quantum signatures using insecure quantum channels

    Get PDF
    Digital signatures are widely used in modern communication to guarantee authenticity and transferability of messages. The security of currently used classical schemes relies on computational assumptions. We present a quantum signature scheme that does not require trusted quantum channels. We prove that it is unconditionally secure against the most general coherent attacks, and show that it requires the transmission of significantly fewer quantum states than previous schemes. We also show that the quantum channel noise threshold for our scheme is less strict than for distilling a secure key using quantum key distribution. This shows that “direct” quantum signature schemes can be preferable to signature schemes relying on secret shared keys generated using quantum key distribution.This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) under EP/G009821/1 and EP/K022717/1. P.W. gratefully acknowledges support from the COST Action MP1006. A.K. was partially supported by a grant from FQXi and by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.This is the author accepted manuscript. The final version is available from the American Physical Society via http://dx.doi.org/10.1103/PhysRevA.93.03232

    Decomposition of pure states of quantum register

    Get PDF
    The generalization of Schmidt decomposition due to Cartelet-Higuchi-Sudbery applied to quantum register (a system of N qubits) is shown to acquire direct geometrical meaning: any pure state is canonically associated with a chain of a simplicial complex. A leading vector method is presented to calculate the values of the coefficients of appropriate chain

    Dynamics & Predictions in the Co-Event Interpretation

    Get PDF
    Sorkin has introduced a new, observer independent, interpretation of quantum mechanics that can give a successful realist account of the 'quantum microworld' as well as explaining how classicality emerges at the level of observable events for a range of systems including single time 'Copenhagen measurements'. This 'co-event interpretation' presents us with a new ontology, in which a single 'co-event' is real. A new ontology necessitates a review of the dynamical & predictive mechanism of a theory, and in this paper we begin the process by exploring means of expressing the dynamical and predictive content of histories theories in terms of co-events.Comment: 35 pages. Revised after refereein

    Spacetime Coarse Grainings in the Decoherent Histories Approach to Quantum Theory

    Get PDF
    We investigate the possibility of assigning consistent probabilities to sets of histories characterized by whether they enter a particular subspace of the Hilbert space of a closed system during a given time interval. In particular we investigate the case that this subspace is a region of the configuration space. This corresponds to a particular class of coarse grainings of spacetime regions. We consider the arrival time problem and the problem of time in reparametrization invariant theories as for example in canonical quantum gravity. Decoherence conditions and probabilities for those application are derived. The resulting decoherence condition does not depend on the explicit form of the restricted propagator that was problematic for generalizations such as application in quantum cosmology. Closely related is the problem of tunnelling time as well as the quantum Zeno effect. Some interpretational comments conclude, and we discuss the applicability of this formalism to deal with the arrival time problem.Comment: 23 pages, Few changes and added references in v

    Distinguishing Initial State-Vectors from Each Other in Histories Formulations and the PBR Argument

    Get PDF
    Following the argument of Pusey, Barrett and Rudolph (Nature Phys. 8:476, 2012), new interest has been raised on whether one can interpret state-vectors (pure states) in a statistical way (ψ\psi-epistemic theories), or if each of them corresponds to a different ontological entity. Each interpretation of quantum theory assumes different ontology and one could ask if the PBR argument carries over. Here we examine this question for histories formulations in general with particular attention to the co-event formulation. State-vectors appear as the initial state that enters into the quantum measure. While the PBR argument goes through up to a point, the failure to meet some of the assumptions they made does not allow one to reach their conclusion. However, the author believes that the "statistical interpretation" is still impossible for co-events even if this is not proven by the PBR argument.Comment: 25 pages, v2 published versio

    The coevent formulation of quantum theory

    Get PDF
    Understanding quantum theory has been a subject of debate from its birth. Many different formulations and interpretations have been proposed. Here we examine a recent novel formulation, namely the coevents formulation. It is a histories formulation and has as starting point the Feynman path integral and the decoherence functional. The new ontology turns out to be that of a coarse-grained history. We start with a quantum measure defined on the space of histories, and the existence of zero covers rules out single-history as potential reality (the Kochen Specker theorem casted in histories form is a special case of a zero cover). We see that allowing coarse-grained histories as potential realities avoids the previous paradoxes, maintains deductive non-contextual logic (alas non-Boolean) and gives rise to a unique classical domain. Moreover, we can recover the probabilistic predictions of quantum theory with the use of the Cournot's principle. This formulation, being both a realist formulation and based on histories, is well suited conceptually for the purposes of quantum gravity and cosmology.Comment: 19 pages, 1 figure. In v2 equation 7 corrected, figure added and references modifie

    Twistor form of massive 6D superparticle

    Get PDF
    The massive six-dimensional (6D) superparticle with manifest (n, 0) supersymmetry is shown to have a supertwistor formulation in which its “hidden” (0, n) supersymmetry is also manifest. The mass-shell constraint is replaced by Spin(5) spin-shell constraints which imply that the quantum superparticle has zero superspin; for n = 1 it propagates the 6D Proca supermultiplet.PKT acknowledges support from the UK Science and Technology Facilities Council (grant ST/L000385/1). AJR is supported by a grant from the London Mathematical Society.This is the final version of the article. It was first available from IOP Science via http://dx.doi.org/10.1088/1751-8113/49/2/02540

    Spacelike distance from discrete causal order

    Get PDF
    Any discrete approach to quantum gravity must provide some prescription as to how to deduce continuum properties from the discrete substructure. In the causal set approach it is straightforward to deduce timelike distances, but surprisingly difficult to extract spacelike distances, because of the unique combination of discreteness with local Lorentz invariance in that approach. We propose a number of methods to overcome this difficulty, one of which reproduces the spatial distance between two points in a finite region of Minkowski space. We provide numerical evidence that this definition can be used to define a `spatial nearest neighbor' relation on a causal set, and conjecture that this can be exploited to define the length of `continuous curves' in causal sets which are approximated by curved spacetime. This provides evidence in support of the ``Hauptvermutung'' of causal sets.Comment: 32 pages, 16 figures, revtex4; journal versio

    The Generalized Second Law implies a Quantum Singularity Theorem

    Full text link
    The generalized second law can be used to prove a singularity theorem, by generalizing the notion of a trapped surface to quantum situations. Like Penrose's original singularity theorem, it implies that spacetime is null geodesically incomplete inside black holes, and to the past of spatially infinite Friedmann--Robertson--Walker cosmologies. If space is finite instead, the generalized second law requires that there only be a finite amount of entropy producing processes in the past, unless there is a reversal of the arrow of time. In asymptotically flat spacetime, the generalized second law also rules out traversable wormholes, negative masses, and other forms of faster-than-light travel between asymptotic regions, as well as closed timelike curves. Furthermore it is impossible to form baby universes which eventually become independent of the mother universe, or to restart inflation. Since the semiclassical approximation is used only in regions with low curvature, it is argued that the results may hold in full quantum gravity. An introductory section describes the second law and its time-reverse, in ordinary and generalized thermodynamics, using either the fine-grained or the coarse-grained entropy. (The fine-grained version is used in all results except those relating to the arrow of time.) A proof of the coarse-grained ordinary second law is given.Comment: 46 pages, 8 figures. v2: discussion of global hyperbolicity revised (4.1, 5.2), more comments on AdS. v3: major revisions including change of title. v4: similar to published version, but with corrections to plan of paper (1) and definition of global hyperbolicity (3.2). v5: fixed proof of Thm. 1, changed wording of Thm. 3 & proof of Thm. 4, revised Sec. 5.2, new footnote

    Emergence of spatial structure from causal sets

    Get PDF
    There are numerous indications that a discrete substratum underlies continuum spacetime. Any fundamentally discrete approach to quantum gravity must provide some prescription for how continuum properties emerge from the underlying discreteness. The causal set approach, in which the fundamental relation is based upon causality, finds it easy to reproduce timelike distances, but has a more difficult time with spatial distance, due to the unique combination of Lorentz invariance and discreteness within that approach. We describe a method to deduce spatial distances from a causal set. In addition, we sketch how one might use an important ingredient in deducing spatial distance, the `nn-link', to deduce whether a given causal set is likely to faithfully embed into a continuum spacetime.Comment: 21 pages, 21 figures; proceedings contribution for DICE 2008, to appear in Journal of Physics: Conference Serie
    corecore