52 research outputs found
Short-term streambed drying events alter amphipod population structure in a central European stream
Temporary streams are becoming increasingly common, but ecological responses to streambed drying are poorly characterized in the temperate continental region of central Europe. In addition, global research has focused on community responses to drying, whereas effects on individual populations remain unknown. We explored the population structure of Gammarus fossarum (Crustacea: Amphipoda) in a central European temporary stream. Benthic gammarids were sampled on five dates during a flow recession, one date between two drying events (of 10 and 20 days, respectively), and five dates after flow resumed. Additional benthic samples were taken from isolated pools and dry sediments during drying events, and freeze cores were collected to compare the vertical distribution of amphipods during wet and dry phases. Gammarids were measured, adults distinguished from juveniles, adults sexed, and female reproductive state determined. Densities increased during flow recession, potentially reflecting both a decline in submerged habitat availability and seasonal increases in juvenile abundance. Persistence within dry benthic sediments was minimal, whereas pools and saturated subsurface sediments supported high population densities. Juveniles comprised 80 % of the subsurface population, suggesting that their ability to inhabit small interstices promotes persistence within the dry reach. Juveniles also comprised 92 % of pool inhabitants, despite their potential exposure to predation. Adults dominated after flow resumed, and population structure was altered post-drying by the loss of spring-recruited juveniles and reproductive females. Our results suggest that streambed drying may have longer-term effects than typically characterized by community-level studies. We recommend management actions that support populations of ecologically important species as they adapt to changing flow regimes
Europe-wide spatial trends in copper and imidacloprid sensitivity of macroinvertebrate assemblages
Exposure to synthetic chemicals, such as pesticides and pharmaceuticals, affects freshwater communities at broad spatial scales. This risk is commonly managed in a prospective environmental risk assessment (ERA). Relying on generic methods, a few standard test organisms, and safety factors to account for uncertainty, ERA determines concentrations that are assumed to pose low risks to ecosystems. Currently, this procedure neglects potential variation in assemblage sensitivity among ecosystem types and recommends a single low-risk concentration for each compound. Whether systematic differences in assemblage sensitivity among ecosystem types exist or their size, are currently unknown. Elucidating spatial patterns in sensitivity to chemicals could therefore enhance ERA precision and narrow a fundamental knowledge gap in ecology, the Hutchinsonian shortfall. We analyzed whether taxonomic turnover between field-sampled macroinvertebrate assemblages of different broad river types across Europe results in systematic differences in assemblage sensitivity to copper and imidacloprid. We used an extensive database of macroinvertebrate assemblage compositions throughout Europe and employed a hierarchical species sensitivity distribution model to predict the concentration that would be harmful to 5% of taxa (HC5) in each assemblage. Predicted
H
C
5
values varied over several orders of magnitude. However, variation within the 95% highest density intervals remained within one order of magnitude. Differences between the river types were minor for imidacloprid and only slightly higher for copper. The largest difference between river-type-specific median
H
C
5
values was a factor of 3.1. This level of variation is below the assessment factors recommended by the European Food Safety Authority and therefore would be captured in the current ERA for plant protection products. We conclude that the differences in taxonomic composition between broad river types translate into relatively small differences in macroinvertebrate assemblage sensitivity toward the evaluated chemicals at the European scale. However, systematic differences in bioavailability and multi-stressor context were not evaluated and might exacerbate the differences in the ecological effects of chemicals among broad river types in real-world ecosystems
Recommended from our members
The recovery of European freshwater biodiversity has come to a halt
Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity
Sediment respiration pulses in intermittent rivers and ephemeral streams
Intermittent rivers and ephemeral streams (IRES) may represent over half the global stream network, but their contribution to respiration and carbon dioxide (CO2) emissions is largely undetermined. In particular, little is known about the variability and drivers of respiration in IRES sediments upon rewetting, which could result in large pulses of CO2. We present a global study examining sediments from 200 dry IRES reaches spanning multiple biomes. Results from standardized assays show that mean respiration increased 32–66‐fold upon sediment rewetting. Structural equation modelling indicates that this response was driven by sediment texture and organic matter quantity and quality, which, in turn, were influenced by climate, land use and riparian plant cover. Our estimates suggest that respiration pulses resulting from rewetting of IRES sediments could contribute significantly to annual CO2 emissions from the global stream network, with a single respiration pulse potentially increasing emission by 0.2–0.7%. As the spatial and temporal extent of IRES increases globally, our results highlight the importance of recognizing the influence of wetting‐drying cycles on respiration and CO2 emissions in stream networks
Roadmap on dynamics of molecules and clusters in the gas phase
This roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty order of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity from the smallest (diatomic) molecules to clusters and nanoparticles. Combining some of these techniques opens up new avenues to unravel hitherto unexplored reaction pathways and mechanisms, and to establish their significance in, e.g. radiotherapy and radiation damage on the nanoscale, astrophysics, astrochemistry and atmospheric science
- …