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Abstract 

Exposure to synthetic chemicals, such as pesticides and pharmaceuticals, affects freshwater communities at broad 
spatial scales. This risk is commonly managed in a prospective environmental risk assessment (ERA). Relying 
on generic methods, a few standard test organisms, and safety factors to account for uncertainty, ERA determines 
concentrations that are assumed to pose low risks to ecosystems. Currently, this procedure neglects potential vari-
ation in assemblage sensitivity among ecosystem types and recommends a single low-risk concentration for each 
compound. Whether systematic differences in assemblage sensitivity among ecosystem types exist or their size, are 
currently unknown. Elucidating spatial patterns in sensitivity to chemicals could therefore enhance ERA precision 
and narrow a fundamental knowledge gap in ecology, the Hutchinsonian shortfall. We analyzed whether taxonomic 
turnover between field-sampled macroinvertebrate assemblages of different broad river types across Europe results 
in systematic differences in assemblage sensitivity to copper and imidacloprid. We used an extensive database 
of macroinvertebrate assemblage compositions throughout Europe and employed a hierarchical species sensitiv-
ity distribution model to predict the concentration that would be harmful to 5% of taxa  (HC5) in each assemblage. 
Predicted HC5 values varied over several orders of magnitude. However, variation within the 95% highest density 
intervals remained within one order of magnitude. Differences between the river types were minor for imidacloprid 
and only slightly higher for copper. The largest difference between river-type-specific median HC5 values was a factor 
of 3.1. This level of variation is below the assessment factors recommended by the European Food Safety Authority 
and therefore would be captured in the current ERA for plant protection products. We conclude that the differences 
in taxonomic composition between broad river types translate into relatively small differences in macroinvertebrate 
assemblage sensitivity toward the evaluated chemicals at the European scale. However, systematic differences in bio-
availability and multi-stressor context were not evaluated and might exacerbate the differences in the ecological 
effects of chemicals among broad river types in real-world ecosystems.
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Introduction
Ecologists investigate biodiversity’s characteristics, 

causes, and consequences. Despite longstanding efforts, 

vast gaps remain in our understanding that can be aggre-

gated into larger classes of issues. We have not yet identi-

fied most taxa (Linnean shortfall, [13]), their geographic 

ranges (Wallacean shortfall, [65]), their phylogenetic rela-

tionships (Darwinian shortfall, [25]), or their functional 

traits (Raunkiæran shortfall, [42]). Given the speed of 

anthropogenic changes to the environment, the Hutchin-

sonian shortfall [42], i.e., the lack of knowledge about the 

tolerance of species to abiotic conditions, might be most 

relevant. These issues converge in freshwaters: many 

shortfalls are most pronounced there [31] and they are 

arguably the most threatened by human actions [2, 27, 

95]. Agricultural land use contributes to many physical 

and chemical stressors that negatively affect freshwater 

ecosystems [104], such as nutrient enrichment [49, 113], 

increased sediment load [49, 125], and exposure to pes-

ticides [115]. While the role of pesticides in broad-scale 

biodiversity trends remains poorly studied [114], studies 

indicate that they impact ecological communities at envi-

ronmentally relevant concentrations [21, 64, 104, 110].

In Europe, active substances must pass a prospec-

tive environmental risk assessment (ERA) before being 

released into the market to prevent unacceptable effects 

on the environment. For each active substance, this 

assessment establishes a presumably safe concentration 

(Predicted no Effect Concentration, PNEC) and a con-

centration predicted to occur in the environment given 

the suggested application procedure (Predicted Exposure 

Concentration, PEC). If a compound’s PEC is lower than 

its PNEC, it is considered safe [11]. PNECs are derived 

in a tiered approach, starting with a mandatory first 

tier, which involves standard toxicity tests under labo-

ratory conditions using single species. The determined 

effect concentrations are divided by an assessment factor 

to obtain the PNEC. The assessment factor is meant to 

account for the uncertainty in extrapolating from labo-

ratory conditions to the field. Higher tier tests may be 

conducted if the PEC exceeds the tier one PNEC. They 

involve increasingly complex scenarios, such as multi-

species and semi-field test systems, and lower assessment 

factors [28].

Many water quality regulations employ type- or site-

specific thresholds for nutrients and other physicochemi-

cal parameters (e.g., [92]). In contrast, ERA assumes that 

a single concentration threshold (the PNEC) can obtain a 

similar protection level across different ecosystems. The 

assessment factor could account for potential sensitiv-

ity variation between ecosystem types, but this kind of 

variation was not considered in the derivation of assess-

ment factors [72]. It remains an open question whether 

systematic taxonomic changes in assemblage compo-

sition among different types of ecosystems result in 

systematic differences in assemblage sensitivity to chemi-

cals. This question is relevant in an applied context. If 

assemblage sensitivity varies systematically among river 

types, using a single PNEC would likely be inefficient and 

potentially ineffective. To date, few studies have investi-

gated broad-scale spatial patterns in sensitivity, partly 

because the sensitivities of most species to most pesti-

cides remain unknown (the Hutchinsonian Shortfall).

Van den Berg et  al. [119] predicted the relative sensi-

tivity of macroinvertebrates toward pesticides with mod-

els using information on functional traits and taxonomic 

relationships. They found considerable differences in the 

percentage of sensitive macroinvertebrate taxa between 

European ecoregions and UK river types. However, the 

magnitude of differences depended on the pesticide’s 

mode of action. The data for Europe consisted only of 

species lists for ecoregions [44] and not of observed 

assemblages. Further, the study relied on a dichotomi-

zation of a relative sensitivity metric (mode-specific 

sensitivity, [97]), where all taxa that had a higher-than-

average sensitivity were classified as sensitive. This met-

ric is impacted by the included taxa and their taxonomic 

resolution. Liang et  al. [63] used a hierarchical Species 

Sensitivity Distribution model (hSSD, [20, 55]) to predict 

the sensitivity of untested macroinvertebrate taxa toward 

18 chemicals. They found spatial patterns in predicted 

macroinvertebrate assemblage sensitivity across Eng-

land, which were more pronounced in specifically than 

non-specifically acting chemicals, and which differed 

between chemicals. They also found statistically signifi-

cant differences in the distribution of the least and most 

sensitive assemblages across river types. Similarly, field 

studies found significant variability between water body 

types within regions [7] but negligible variation in assem-

blage sensitivity between central and northern European 

streams [98, 102]. Together, these studies point toward 

broad-scale spatial patterns in sensitivity, but patterns in 

field-sampled assemblage at the European scale have not 

been evaluated.

In this paper, we investigated whether macroinverte-

brate assemblage sensitivity toward copper and imidaclo-

prid differs systematically among broad river types across 

Europe. The chemicals we evaluate represent heavy met-

als and insecticides and are relatively well-tested. We 

focused on the sensitivity of macroinvertebrate assem-

blages as they are among the groups facing the highest 

risk from exposure [71, 130]. To predict the sensitivities 

of untested taxa, we used an hSSD model that integrates 

chemical properties and taxonomic relatedness.

We chose to analyze patterns in aquatic invertebrates 

as they are among the organism groups facing the highest 
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risk from chemical exposure [80, 107],Wolfram et  al., 

2023). Simultaneously, large-scale data on the occur-

rences of aquatic invertebrates, a prerequisite for our 

study, are available through national monitoring pro-

grams. Similarly, the selection of chemicals was moti-

vated by relevance and data availability.

Copper and imidacloprid can impact aquatic inver-

tebrate communities at environmentally relevant con-

centrations. Copper naturally occurs in freshwater 

ecosystems due to weathering, erosion, atmospheric dep-

osition, and groundwater influx [19]. Though natural var-

iation in concentrations is large [132], harmful levels are 

typically reached through human interventions, particu-

larly in areas with intensive agricultural activities. Agri-

cultural copper inputs to freshwaters account for close to 

half the total load and are largely due to erosion of soil 

and surface water runoff after the application of copper-

based pesticides [19]. For aquatic invertebrates, high 

levels of copper can affect osmoregulation [12] and have 

been shown to change the community structure signifi-

cantly [48]. Imidacloprid is a widely used neonicotinoid 

insecticide commonly found in freshwater ecosystems 

[12, 29]. It is highly toxic to many aquatic invertebrates, 

particularly insects, and can cause mortality, and behav-

ioral changes [81], potentially altering the composition 

and functioning of these communities [121].

Methods
Data collection and harmonization

We compiled a database of river macroinvertebrate 

assemblages throughout Europe from openly available 

and unpublished national monitoring datasets (see sup-

plementary materials). Each assemblage corresponds to 

an actual field sample. All samples were collected in or 

after 2005 and with proportional multi-habitat sampling 

equal to or similar to the AQEM-STAR method [4]. To 

ensure comparability, we harmonized taxonomy across 

datasets with the taxonomic backbone of the Global Bio-

diversity Information Facility (www. gbif. org), only used 

samples collected between May and September, and 

restricted the data to phyla that occurred in all datasets 

(Annelida, Mollusca, and Arthropoda). If multiple sam-

ples were taken from a site, we used only the most recent 

one.

We classified all catchments as disturbed or least dis-

turbed (sensu [112]) based on a European stressor data-

base [62]. This database includes catchment-level data on 

seven indicators of anthropogenic stress: mixture toxic 

pressure, extent of urban and agricultural land use in the 

riparian zone, alteration of mean annual flow and base 

flow, and total phosphorus and nitrogen load. We classi-

fied catchments as disturbed if the value for at least one 

of the seven stressors exceeded its 24th percentile. In 

an earlier study, the 24% threshold was found to maxi-

mize the ratio of least disturbed catchments with high 

or good ecological quality to least disturbed catchments 

with moderate, poor, or bad ecological quality [50]. Sub-

sequently, all assemblages from sampling sites within a 

catchment were assigned the same disturbance state as 

their catchment.

We conducted all analyses twice, once with only assem-

blages from the least disturbed catchments and once 

with the complete dataset. When we include assemblages 

from disturbed catchments in the analysis, stressor-

induced taxonomic homogenization [74, 89] can reduce 

taxonomic turnover among river types. Notwithstand-

ing, most catchments in our database were categorized 

as disturbed, and removing such catchments reduced 

our statistical power and spatial coverage. The dataset 

comprised 13713 assemblages from distinct sampling 

sites, 3703 (27%) were least disturbed (Fig. 1). As results 

differed little between the two datasets, we present the 

results for assemblages from least disturbed catchments. 

The results for all assemblages are provided in the sup-

plementary materials.

National river typology systems are available in all 

European states but differ strongly between countries. 

Therefore, we assigned each assemblage to one of twelve 

broad river types (Table 1), which are an aggregation of 

national Water Framework Directive typology types and 

currently the only pan-European river typology system 

that classifies river segments rather than regions [69]. 

The taxonomic composition of biotic assemblages in least 

disturbed catchments varies more strongly among types 

than within them, which is a crucial assumption for any 

typology system [50, 51]. While these differences in com-

munity compositions are only marginal, superior alterna-

tives are currently lacking.

To each assemblage, we assigned the broad river types 

of the spatially closest river segment in the digital river 

network provided by Globevnik [33], which includes the 

segments’ broad river types. Assigning sites to river seg-

ments is error-prone. The sampled segments might be 

missing from the digital river network, or the sites might 

be closer to other segments due to potential inaccuracies 

in the site coordinates or the spatial position of segments. 

To reduce the likelihood of such errors, we removed 

assemblages located > 300 m from the closest river seg-

ment. Further, we validated our assignment of assem-

blages to the river segments by visually comparing the 

sampling site and segment location against the CaroDB.

Positron base map with the mapview R package [3].

Predicting assemblage sensitivity with hSSDs

We derived the sensitivity of the 13713 assemblages (least 

disturbed and disturbed) toward a heavy metal (copper) 

http://www.gbif.org
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and an insecticide (imidacloprid). If we lacked sensitivity 

data for a taxon, we predicted its sensitivity with an hSSD 

model. The hSSD model expands upon Species Sensitiv-

ity Distributions (SSD), which estimate the probability 

distribution of sensitivities (usually log ( EC50 )) which 

different taxa have toward one chemical [58, 93]. Since 

sensitivities are partly phylogenetically conserved [34, 

35, 70], hSSD models use the relatedness among taxa to 

predict sensitivities [118]. We employed the hSSD model 

(version 122b) proposed by Craig [20] and described in 

Sinclair et al. [107]. This is a Bayesian model that uses a 

Markov chain Monte Carlo (MCMC) method to sample 

from a distribution representing uncertainty about the 

sensitivity of taxa in the total species pool, taking into 

Fig. 1 Spatial distribution of 10010 disturbed and 3703 least disturbed macroinvertebrate sampling sites across Europe

Table 1 IDs and names of the 12 broad river types developed by Lyche Solheim et al. [69]

River segments are lowland if they are < 200 m above sea level (m.a.s.l.), mid-altitude for 200–800 m.a.s.l., and highland for > 800 m.a.s.l. The catchment area 

determines segment size: very small–small < 100  km2, medium-large 100–10.000  km2, and very large > 10.000  km2. Depending on their lithology and pedology, 

catchments are calcareous or siliceous if the respective soil types or minerals cover > 50% of their area. Catchments are mixed if coverage is between 40 and 50%. 

Catchments with > 20% of their area covered by histosols are organic. The broad river types consider Mediterranean rivers as distinct and within those also the flow 

regime (perennial/temporary). Lastly, the table contains the number of sites (= number of samples) from least disturbed catchments for each broad river type

ID Broad river type # Least 
disturbed 
sites

RT1 Very large 109

RT2 Lowland, calcareous or mixed, medium to large 537

RT3 Lowland, calcareous or mixed, very small to small 278

RT4 Lowland, siliceous including organic, medium to large 458

RT5 Lowland, siliceous including organic, very small to small 416

RT6 Mid-altitude, calcareous including organic, medium to large 203

RT7 Mid-altitude, calcareous or mixed, very small to small 120

RT8 Mid-altitude, siliceous including organic, medium to large 464

RT9 Mid-altitude, siliceous including organic, very small to small 369

RT10 Highland and glacial 358

RT11 Mediterranean perennial 300

RT12 Mediterranean temporary and very small 111



Page 5 of 14Jupke et al. Environmental Sciences Europe          (2024) 36:124  

account the available toxicity data and the taxonomic 

relatedness of species tested and to be predicted.

We trained the hSSD model on acute toxicity data from 

the US EPA ECOTOXicology Knowledgebase [83], avail-

able at http:/www. epa. gov/ ecotox/). The toxicity data 

consisted of EC50 (immobility) or LC50 values for aque-

ous exposure with durations of 1–7 days. A total of 2197 

unique taxa were included in the dataset, where sensitiv-

ity data were available for 59 and 33 taxa for copper and 

imidacloprid, respectively. These training taxa included 

insect, annelid, and mollusk species (see supplementary 

materials for a list of trained species). Using the param-

eter values estimated in the model training, we predicted 

the log EC50 for all untested taxa in our assemblages 

(Fig. 2). We estimated model parameters with a Metropo-

lis within blocks Gibbs approach, an MCMC algorithm, 

and used the taxonomic levels genus, family, order, class, 

and phylum. The MCMC had a burn-in of 10000 (cop-

per) or 20000 (imidacloprid) runs and the predicted log 

( EC50 ) values were calculated from 30000 (copper) or 

50000 (imidacloprid) samples drawn with a thinning 

of 15. We used more samples for imidacloprid as this 

increased the number of species with a stationary poste-

rior distribution.

We removed all taxa for which a Heidelberger–Welch 

test [39] indicated that the posterior was non-station-

ary ( α = 0.05 ), which indicated that those estimates 

were unreliable. Removing those taxa reduced the total 

number of taxa from 2197 to 2192 and 1361 for copper 

and imidacloprid, respectively. There was no systematic 

difference between the log(EC50) values of taxa with sta-

tionary and non-stationary posteriors for copper and a 

noticeable but ultimately inconsequential difference for 

imidacloprid (supplementary materials). The omitted 

taxa were unequally distributed across orders (sup-

plementary materials). For each assemblage, we calcu-

lated the fraction of the remaining taxa. Assemblages 

where this fraction was lower than 50% were omitted 

from further analyses. This did not affect the number of 

assemblages for copper. For imidacloprid, this reduced 

the total number of assemblages from 13713 to 11590 

and the number of least disturbed assemblages from 

3707 to 3107.

We built assemblage SSDs by fitting log-normal dis-

tributions to the predicted log(EC50 ) values of the taxa 

within observed assemblages. We followed the guid-

ance in EFSA [28] and only fit SSDs to assemblage with 

at least eight taxa. Further, we checked the fit of the 

log-normal distribution with a Kolmogorov–Smirnov 

test [57, 108]. Assemblages with a statistically signifi-

cant test ( α = 0.05 ) are not well approximated by the 

log-normal distribution and were omitted from fur-

ther analyses. This reduced the number of assemblages 

to 13127 (3606 least disturbed) for copper and 10815 

(2935 least disturbed) for imidacloprid. The omitted 

sites were distributed relatively equally among river 

types (supplementary materials). Tables with the pre-

dicted EC50 values are available in the supplementary 

materials. Lastly, we predicted the concentration that 

would affect 5% of taxa from the assemblage (Hazard 

Concentration 5, HC5 ) as the fifth percentile of the 

distribution fitted to its log(EC50 ) values. The HC5 is 

a suitable summary statistic to express the potential 

effects of chemical exposure on assemblages [99]. To 

facilitate comparisons among chemicals, we scaled the 

HC5 values by dividing the HC5 values by the median 

HC5 of the chemical and then taking the decadal loga-

rithm of the quotient.

Fig. 2 Workflow of the analysis. We used hierarchical species sensitivity distribution models (hSSD) to predict the sensitivity of 2197 taxa 
toward copper and imidacloprid. After removing taxa for which no reliable prediction could be made because the posterior distribution of the log 
 (EC50) did not reach a stationary state, we fit log-normal distributions to the predicted log  (EC50) values of each observed macroinvertebrate 
assemblage. Given that the log-normal was a reasonable approximation of the empirical distribution of log  (EC50) values, we determined 
the assemblage  HC5 as the fifth percentile of the fitted distribution. We evaluated the accuracy of predictions using leave-one-out cross-validation. 
Iteratively, each training taxon was removed from the training data and a hSSD model trained on the remaining taxa was used to predict 
the omitted taxon’s  LC50

http://www.epa.gov/ecotox/
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Detecting patterns in sensitivities

We used Cliff ’s d to estimate whether sensitivities dif-

fered between river types. As the distributions of pre-

dicted HC5 values were strongly skewed and non-normal 

(Fig. 3), we used this non-parametric effect size estimate, 

which is robust toward non-normality and outliers [17] 

as it does not compare indicators of distribution location. 

Cliff ’s d is the sample approximation of δ , which is the 

probability that a value (here HC5 ) from one group (here 

each broad river type) is higher than those from another 

group (Eq. (1)).

This probability is approximated by computing the pro-

portion of values in one group that exceed those in the 

other (Eq. (2)).

The [ · ] are Iverson brackets, defined to take the value 

one if the contained statement is true and 0 otherwise. 

m and n are the respective group sizes. According to 

Romano et al. [96], | d | values above 0.47 strongly support 

group differences.

The Cliff ’s d provided us with an estimate of whether 

HC5 values differ between groups but not with an esti-

mate of the magnitude of these differences. To this end, 

we divided the median HC5 value for all combinations 

of river types to obtain an estimate of the factor of vari-

ation between types. To reduce the impact of the skewed 

distributions, we only used HC5 values within the 95% 

highest density interval (HDI), i.e., the smallest interval 

that contains 95% of the observations. ERA accommo-

dates uncertainty in estimates, including the possibility 

(1)δ = Pr
(

xi > xj
)

− Pr
(

xi < xj
)

(2)d =

�
m
i=1

�
n
j=1

[

xi > xj
]

−

[

xi < xj
]

mn

for systematic differences between recipient ecosystems, 

through assessment factors. When determining regula-

tory acceptable concentrations with SSDs, the European 

Food Safety Authority (EFSA) recommends assessment 

factors of three to six for invertebrates [28]. Among the 

suggestions to choose a value within that range is to con-

sider the quality of the toxicity data used to construct the 

SSD. As most of our toxicity data are predictions from 

the hSSD, we prefer to err on the side of caution and 

consider the higher assessment factor of six. Thus, dif-

ferences between river types that exceed a factor of six 

would surpass the variation accounted for by current 

practices without considering other sources of variation, 

such as biotic interactions or the extrapolation from lab-

oratory to field conditions.

Software

We conducted all analyses in R 4.3.0 [94]. For data wran-

gling, we used the packages tidyverse 2.0.0 [127], data.

Table  1.14.8 [26], and sf 1.0–12 [88]. For analyses, we 

used the packages vegan 2.6–4 [82], MASS 7.3–58.3 

[123], effsize 0.8.1 [117] and HDInterval 0.2.4 [75]. We 

created visualizations with ggplot2 3.4.2 [126], tmap 

3.3–3 [116], and cowplot 1.1.1 [128].

Results
Assemblage HC5 values varied by up to two and three 

orders of magnitude for copper and imidacloprid, respec-

tively (Fig.  3). Within the 95% HDI, the predicted HC5 

values only varied by one order of magnitude. Our cross-

validation indicated a median relative error of 0.87 and 

0.99, for copper and imidacloprid, respectively (supple-

mentary materials).

The predicted assemblage HC5 values varied more 

strongly within than among broad river types (Fig.  4). 

Fig. 3 Density of assemblage hazard concentration 5 ( HC5 ) values for copper and imidacloprid. HC5 values outside the 95% highest density interval 
for the respective chemical are shaded black. Only the least-disturbed sites are included. The X-axis is log10-scaled, and the X-axis ranges vary 
across chemicals
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The largest among-type differences are apparent for 

copper, where the median scaled HC5 of very large riv-

ers (RT1) is -0.35, i.e., at approximately 45% of the over-

all median HC5 for copper and highland rivers (RT10) 

is at 0.13, i.e., approximately 1.3 times the overall 

median for copper. An alternative version of Fig. 4 with 

log ( HC5 ) on the y-axis is available in the supplemen-

tary materials.

The analysis of Cliff ’s d confirmed this impression 

(Fig. 5). Differences between broad river types exceeded 

the heuristic threshold of 0.47 for copper and imidaclo-

prid. For copper, assemblages in lowland rivers (RT1-5), 

especially very large rivers (RT1), were more sensitive 

to copper than those from mid-altitude (RT6-9), high-

land (RT10), and Mediterranean rivers (RT11,12). Across 

altitude levels, assemblages from calcareous rivers were 

more sensitive toward copper than those from siliceous 

rivers. For imidacloprid, all threshold exceedances 

included very large rivers. Their assemblages were nota-

bly less sensitive than those from mid-altitude (RT6 and 

RT8) and perennial Mediterranean (RT11) rivers.

We quantified the differences between river types by 

computing the quotients of river type-specific median 

HC5 values. All quotients were below six for both chemi-

cals, i.e., median river type HC5 values differed by less 

than a factor of six. The highest quotient between median 

HC5 values was 3.1 (Fig. 6), which we observed for cop-

per between very large rivers (RT1) and highland rivers 

(RT10).

Propagating the uncertainty we quantified in the cross-

validation, slightly increased the variation between river 

types (supplementary materials).

Discussion
We predicted the sensitivity of macroinvertebrate 

assemblages toward copper and imidacloprid at a Euro-

pean scale and compared these assemblage sensitivi-

ties among European broad river types. We found clear 

sensitivity differences among river types and observed 

the largest between-type difference in the median 

HC5 , a factor of 3.1, for copper between very large riv-

ers (highest sensitivity) and highland rivers (lowest 

Fig. 4 Density distribution of scaled hazard concentration 5 ( HC5 ) values for both chemicals and all broad river types. Scaling was achieved 
by dividing HC5 values by the median HC5 for the chemical across broad river types and taking the decadal logarithm of this quotient. Values 
of zero thus imply that the value is equal to the chemical’s overall median, and values of 1 indicate that the value is one order of magnitude greater 
than the overall median. Horizontal lines within the density curves are medians. This plot shows the least-disturbed sites and values within the 95% 
highest density interval
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sensitivity). This variation is lower than the assessment 

factors recommended by EFSA [28] and is thus implic-

itly accounted for in current practices. The assessment 

factors were derived by comparing HC5 values from 

SSDs to no or low observed effect concentrations from 

mesocosm studies [72]. They account for biotic inter-

actions and the extrapolation from laboratory to field 

conditions, not for variation in assemblage composi-

tion. While the variation between river types did not by 

itself exceed the assessment factor it adds to the already 

considered variation and the total variation might sur-

pass the assessment factor. The variation between river 

types we found could thus justify additional, albeit 

small, assessment factors. Further studies are needed 

to assess the need for such factors for other chemicals, 

primarily specifically acting ones [63], at the European 

scale.

Overall, sensitivity differed among broad river types 

but only weakly and in a chemical-dependent man-

ner. Our results suggest that variation in macroinver-

tebrate assemblage sensitivity, solely due to taxonomic 

composition, exists at the European scale but is neither 

pronounced nor well captured by existing freshwater 

typology systems. Recently, Liang et  al. [63] found pro-

nounced spatial patterns in the sensitivity of macroin-

vertebrate assemblages toward different chemicals across 

England. While these results seem contradictory to ours, 

the apparent difference can be traced back to four dis-

tinctions between the studies. First, they analyzed differ-

ent chemicals. Liang et al. [63] evaluated 18 compounds 

of which only copper matched between their and our 

data set. In addition, neonicotinoids were absent from 

their analysis. As spatial patterns differ between chemi-

cals in both studies, we should be careful when extrapo-

lating to untested chemicals. Second, they focused on 

the least and most sensitive assemblages instead of the 

median sensitivity. Thus, they aimed to answer a differ-

ent question. Third, our study considers larger spatial 

scales. Scale dependence has been recorded for various 

ecological phenomena [16], e.g., [38], and larger differ-

ences between broad river types may exist within regions 

of Europe. However, the low overall variation between 

observed HC5 values and the results of previous studies 

[98, 102] render this unlikely.

Fig. 5 Differences between the assemblage hazard concentration 5 ( HC5 ) values of different broad river types expressed as the absolute value 
of Cliff’s d. X- and Y-Axis give the broad river type ID (Table 1). Dark blue cells indicate the smallest differences and dark red cells mark the largest 
observed differences. An asterisk marks Cliff’s d values that exceed the threshold of 0.47. Values are based on the least disturbed sites only

Fig. 6 The factor of variation between median HC5 s of broad river 
types. The black dashed vertical lines mark factors of one and six, 
i.e., the lowest possible value and the upper limit for assessment 
factors suggested by EFSA for deriving regulatory thresholds 
with macroinvertebrate Species Sensitivity Distributions. Small 
vertical lines show individual quotients
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We limited our analysis to the least disturbed sites to 

focus the analyses on relatively unaltered biotic commu-

nities. However, we cannot exclude or gage the poten-

tial impact of unmeasured or omnipresent stressors on 

these communities. The qualitative agreement between 

the results obtained for all sites (supplementary mate-

rials) and those obtained for the least disturbed sites 

could indicate a considerable discrepancy between least 

and minimally disturbed conditions [112] in our sam-

ples. Stressor-induced taxonomic harmonization, as has 

been reported for the omnipresent stressor of increasing 

temperature [32, 79], could have contributed to reduced 

differences in sensitivity. However, Liang et al. [63] ana-

lyzed sites of mixed and high water quality separately and 

found communities from high water quality samples to 

be more similar in taxonomic composition and less vari-

able in sensitivity.

Sources of uncertainty and limitations

As is common with large-scale ecological studies, our 

results contain uncertainty [46, 106]. Here, it mainly 

stems from the limited availability of toxicity data. Our 

hSSD models were trained on 59 taxa for copper and 33 

for imidacloprid. While internal model parameters ben-

efit from more extensive training [20], our predicted  LC50 

values would have been more precise if more training 

data were available. We have quantified this uncertainty 

in cross-validation and found that it likely is of little con-

sequence to our conclusions. Still, more toxicity data 

would have improved model fits and reduced the number 

of removed taxa.

Another source of uncertainty is our biological data. 

Although our dataset is one of the most comprehensive 

collections of European macroinvertebrate occurrences, 

the samples are unevenly distributed. As is common with 

macroinvertebrate data, the taxonomic resolution can 

be low, e.g., mostly at the family level for Chironomidae, 

potentially obscuring differences. Lastly, we combined 

datasets which introduces biases if datasets differ system-

atically. However, all included datasets followed the same 

sampling protocol (AQEM-STAR; [4]), except for one 

that employed a highly similar approach [56, 66]. Addi-

tionally, we considered occurrence data, which is less 

sensitive to variations in sampling methods compared to 

abundance data [14, 29, 45].

Comparing  HC5 values among broad river types 

assumes that a discrete representation of space is suita-

ble, and specifically, that the broad river types are a good 

representation of environmental gradients. We used the 

broad river types because they are the only pan-European 

river typology system. Alternative systems either clas-

sify regions instead of segments (e.g., [44, 76]) or extend 

beyond Europe [85] and thus have a lower resolution. 

Jupke et  al. [50] and Jupke et  al. [51] showed that the 

community composition differs nearly as much within 

the broad river types as among them. Larger sensitivity 

differences between river types are more likely if com-

munity composition differs strongly between river types 

[63]. While other typology systems could elicit stronger 

differences, additional analyses (not reported) do not 

support this. Overall, we have no reason to believe that 

any of the discussed factors introduced a systematic bias, 

impacting river-type comparison.

Further prospects of type‑specific risk assessment

Our results lend limited support for the use of a type-

specific ERA. Considering ecosystem types in ERA may 

still deliver more precise thresholds because bioavailabil-

ity and stressor context can vary systematically among 

river types. The effects of a chemical on biota are deter-

mined by its bioavailable fraction, which can be consid-

erably lower than the total load [67]. Bioavailability, i.e., 

the extent to which a contaminant is available for uptake 

by organisms, is determined by how strongly the chemi-

cal adsorbs to available surfaces, its speciation, and its 

degradation rate. All three factors are governed by water 

pH (e.g., [24, 53, 131]), temperature [54, 87], as well as 

size and organic carbon content of suspended solids 

[24, 36, 40]. Water hardness reduces the uptake of met-

als because the calcium cations compete for the same 

membrane transport proteins as the metals [43, 73, 109]. 

Temperature, pH, organic carbon content, and water 

hardness are affected by factors that are, or could easily 

be, implemented in river typology systems, such as alti-

tude, bedrock geology, or dominant catchment soil type. 

The bioavailable fraction, and therefore the effect of a 

chemical, might differ between river types, even when the 

inherent sensitivity of the assemblages is similar. Most 

aquatic ecosystems face exposure to multiple stress-

ors at or above ecologically relevant thresholds [101, 

124]. Hence, organisms are likely already in a stressed 

state before the exposure to the chemical(s). The simul-

taneous or antecedent occurrence of other, chemical or 

non-chemical, stressors can strongly impact a chemical’s 

physiological and ecological effects (e.g., [9]). The toxic-

ity of pyrethroids increases with decreasing temperature 

[18, 37] and with increasing salinity [37]. Under hypoxic 

conditions, some metal cations occur in lower valence 

states (e.g.,  Cu+), which differ in toxicity from higher 

valence forms (e.g., [105]). For example, the same levels 

of oxygen reduction and copper that were individually 

non-lethal led to a 50% mortality in the mayfly Ephoron 

virgo when combined [120]. These examples are by no 

means exhaustive (see Holmstrup et  al. [41] and Stein-

berg [111] for reviews on these topics) but demonstrate 

the potential for stressor interactions. A meta-analysis of 
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such interactions found synergistic interactions (i.e., the 

combined effect exceeds the sum of independent effects) 

in 62% of cases [59]. Conversely, models using only the 

dominant stressors best explained the observed effects 

on organisms in a study investigating the combined 

effects of climate change and additional stressors [78]. 

The prevalence and magnitude of many stressors differ 

between river types [8, 61, 101], and the same is true for 

responses of a taxon to the same stressor [1, 15, 23]. In a 

spatially explicit risk assessment, we may delineate likely 

river-type-specific combinations of stressors or chemi-

cals. A key challenge for including stressor interactions in 

prospective risk assessment is the large number of pos-

sible combinations [68]. Both multiple stressor and mix-

ture toxicity research are currently active, though poorly 

integrated, fields of science [84, 100]. One potential inte-

gration pathway could be identifying the most common 

type-specific stressor combinations. We might use avail-

able field data (e.g., [64, 103]) or a combination of high-

resolution crop classification at the national [5, 10] or 

continental level [22, 90] and inventories of crop-specific 

active ingredients [47] to predict common mixtures of 

pesticides. Pistocchi et  al. [91] took steps in this direc-

tion by predicting the concentrations and cumulative 

toxicities of 148 active substances throughout Europe. 

Field data or predictions on other stressors, such as 

nutrients [62], flow regime shifts [62], temperature [52], 

and salinity [60], are also available on broad spatial scales 

and could be used to identify common and type-specific 

combinations of non-chemical and chemical stressors. 

This approach cannot address second-order effects fol-

lowing the primary changes to the species composition 

or food web structure [30, 86, 129]. Such net effects of 

biotic interactions are context-dependent and currently 

defy accurate determination [6].

Conclusions

Current ERA practices fail to fully protect non-target 

organisms. One way to improve ERA might be to account 

for differences between recipient ecosystems in biotic 

and abiotic conditions. We found the differences in mac-

roinvertebrate assemblage sensitivities to copper and 

imidacloprid among broad river types at a European scale 

to be within the uncertainty accounted for in ERA via 

assessment factors. Notably, spatial variation in assem-

blage composition was not considered in the derivation 

of assessment factors. Between-type variation might thus 

contribute to other sources of variation, which, in total, 

exceeds assessment factors. Therefore, our study provides 

some support for a river-type-specific risk assessment for 

the two chemicals studied. Additionally, our predictions 

build on the taxonomic composition of assemblages and 

do not consider potential differences in the bioavailability 

of toxic substances and multiple stressor contexts. Both 

might contribute to a higher variation in the ecological 

effects of chemicals between river types. Lastly, the find-

ing of considerable differences in sensitivity rank order 

and magnitude of variation between chemicals indicate 

that the results should only be extrapolated to other 

chemicals after careful consideration.
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