15 research outputs found

    Cross-Protection to New Drifted Influenza A(H3) Viruses and Prevalence of Protective Antibodies to Seasonal Influenza, During 2014 in Portugal

    Get PDF
    INTRODUCTION: Immune profile for influenza viruses is highly changeable over time. Serological studies can assess the prevalence of influenza, estimate the risk of infection, highlight asymptomatic infection rate and can also provide data on vaccine coverage. The aims of the study were to evaluate pre-existing cross-protection against influenza A(H3) drift viruses and to assess influenza immunity in the Portuguese population. MATERIALS AND METHODS: We developed a cross-sectional study based on a convenience sample of 626 sera collected during June 2014, covering all age groups, both gender and all administrative health regions of Portugal. Sera antibody titers for seasonal and new A(H3) drift influenza virus were evaluated by hemagglutination inhibition assay (HI). Seroprevalence to each seasonal influenza vaccine strain virus and to the new A(H3) drift circulating strain was estimated by age group, gender and region and compared with seasonal influenza-like illness (ILI) incidence rates before and after the study period. RESULTS: Our findings suggest that seroprevalences of influenza A(H3) (39.9%; 95% CI: 36.2-43.8) and A(H1)pdm09 (29.7%; 95% CI: 26.3-33.4) antibodies were higher than for influenza B, in line with high ILI incidence rates for A(H3) followed by A(H1)pdm09, during 2013/2014 season. Low pre-existing cross-protection against new A(H3) drift viruses were observed in A(H3) seropositive individuals (46%). Both against influenza A(H1)pdm09 and A(H3) seroprotection was highest in younger than 14-years old. Protective antibodies against influenza B were highest in those older than 65years old, especially for B/Yamagata lineage, 33.3% (95% CI: 25.7-41.9). Women showed a high seroprevalence to influenza, although without statistical significance, when compared to men. A significant decreasing trend in seroprotection from north to south regions of Portugal mainland was observed. CONCLUSIONS: Our results emphasize that low seroprotection increases the risk of influenza infection in the following winter season. Seroepidemiological studies can inform policy makers on the need for vaccination and additional preventive measures.info:eu-repo/semantics/publishedVersio

    Interim 2017/18 influenza seasonal vaccine effectiveness: Combined results from five European studies

    Get PDF
    Between September 2017 and February 2018, influenza A(H1N1)pdm09, A(H3N2) and B viruses (mainly B/Yamagata, not included in 2017/18 trivalent vaccines) co-circulated in Europe. Interim results from five European studies indicate that, in all age groups, 2017/18 influenza vaccine effectiveness was 25 to 52% against any influenza, 55 to 68% against influenza A(H1N1)pdm09, -42 to 7% against influenza A(H3N2) and 36 to 54% against influenza B. 2017/18 influenza vaccine should be promoted where influenza still circulates

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    SARS-CoV-2 introductions and early dynamics of the epidemic in Portugal

    Get PDF
    Genomic surveillance of SARS-CoV-2 in Portugal was rapidly implemented by the National Institute of Health in the early stages of the COVID-19 epidemic, in collaboration with more than 50 laboratories distributed nationwide. Methods By applying recent phylodynamic models that allow integration of individual-based travel history, we reconstructed and characterized the spatio-temporal dynamics of SARSCoV-2 introductions and early dissemination in Portugal. Results We detected at least 277 independent SARS-CoV-2 introductions, mostly from European countries (namely the United Kingdom, Spain, France, Italy, and Switzerland), which were consistent with the countries with the highest connectivity with Portugal. Although most introductions were estimated to have occurred during early March 2020, it is likely that SARS-CoV-2 was silently circulating in Portugal throughout February, before the first cases were confirmed. Conclusions Here we conclude that the earlier implementation of measures could have minimized the number of introductions and subsequent virus expansion in Portugal. This study lays the foundation for genomic epidemiology of SARS-CoV-2 in Portugal, and highlights the need for systematic and geographically-representative genomic surveillance.We gratefully acknowledge to Sara Hill and Nuno Faria (University of Oxford) and Joshua Quick and Nick Loman (University of Birmingham) for kindly providing us with the initial sets of Artic Network primers for NGS; Rafael Mamede (MRamirez team, IMM, Lisbon) for developing and sharing a bioinformatics script for sequence curation (https://github.com/rfm-targa/BioinfUtils); Philippe Lemey (KU Leuven) for providing guidance on the implementation of the phylodynamic models; Joshua L. Cherry (National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health) for providing guidance with the subsampling strategies; and all authors, originating and submitting laboratories who have contributed genome data on GISAID (https://www.gisaid.org/) on which part of this research is based. The opinions expressed in this article are those of the authors and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government. This study is co-funded by Fundação para a Ciência e Tecnologia and Agência de Investigação Clínica e Inovação Biomédica (234_596874175) on behalf of the Research 4 COVID-19 call. Some infrastructural resources used in this study come from the GenomePT project (POCI-01-0145-FEDER-022184), supported by COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation (POCI), Lisboa Portugal Regional Operational Programme (Lisboa2020), Algarve Portugal Regional Operational Programme (CRESC Algarve2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by Fundação para a Ciência e a Tecnologia (FCT).info:eu-repo/semantics/publishedVersio

    Estimates of 2012/13 influenza vaccine effectiveness using the case test-negative control design with different influenza negative control groups

    No full text
    Background: In recent years several reports of influenza vaccine effectiveness (VE) have been made early for public health decision. The majority of these studies use the case test-negative control design (TND), which has been showed to provide, under certain conditions, unbiased estimates of influenza VE. Nevertheless, discussions have been taken on the best influenza negative control group to use. The present study aims to contribute to the knowledge on this field by comparing influenza VE estimates using three test-negative controls: all influenza negative, non-influenza respiratory virus and pan-negative. Methods Incident ILI patients were prospectively selected and swabbed by a sample of general practitioners. Cases were ILI patients tested positive for influenza and controls ILI patients tested negative for influenza. The influenza negative control group was divided into non-influenza virus control group and pan-negative control group. Data were collected on vaccination status and confounding factors. Influenza VE was estimated as one minus the odds ratio of been vaccinated in cases versus controls adjusted for confounding effect by logistic regression. Results Confounder adjusted influenza VE against medically attended laboratory-confirmed influenza was 68.4% (95% CI: 20.7–87.4%) using all influenza negatives controls, 82.1% (95% CI: 47.6–93.9%) using non-influenza controls and 49.4% (95% CI: −44.7% to 82.3%) using pan-negative controls. Conclusions Influenza VE estimates differed according to the influenza negative control group used. These results are in accordance with the expected under the hypothesis of differential viral interference between influenza vaccinated and unvaccinated individuals. Given the wide importance of TND study further studies should be conducted in order to clarify the observed differences

    Vaccine effectiveness in preventing laboratory-confirmed influenza in primary care patients in a season of co-circulation of influenza A(H1N1)pdm09, B and drifted A(H3N2), I-MOVE Multicentre Case–Control Study, Europe 2014/15

    Get PDF
    Influenza A(H3N2), A(H1N1)pdm09 and B viruses co-circulated in Europe in 2014/15. We undertook a multicentre case–control study in eight European countries to measure 2014/15 influenza vaccine effectiveness (VE) against medically-attended influenza-like illness (ILI) laboratory-confirmed as influenza. General practitioners swabbed all or a systematic sample of ILI patients. We compared the odds of vaccination of ILI influenza positive patients to negative patients. We calculated adjusted VE by influenza type/subtype, and age group. Among 6,579 ILI patients included, 1,828 were A(H3N2), 539 A(H1N1)pdm09 and 1,038 B. VE against A(H3N2) was 14.4% (95% confidence interval (CI): -6.3 to 31.0) overall, 20.7% (95%CI: -22.3 to 48.5), 10.9% (95%CI -30.8 to 39.3) and 15.8% (95% CI: -20.2 to 41.0) among those aged 0–14, 15–59 and ≥60  years, respectively. VE against A(H1N1)pdm09 was 54.2% (95%CI: 31.2 to 69.6) overall, 73.1% (95%CI: 39.6 to 88.1), 59.7% (95%CI: 10.9 to 81.8), and 22.4% (95%CI: -44.4 to 58.4) among those aged 0–14, 15–59 and ≥60 years respectively. VE against B was 48.0% (95%CI: 28.9 to 61.9) overall, 62.1% (95%CI: 14.9 to 83.1), 41.4% (95%CI: 6.2 to 63.4) and 50.4% (95%CI: 14.6 to 71.2) among those aged 0–14, 15–59 and ≥60 years respectively. VE against A(H1N1)pdm09 and B was moderate. The low VE against A(H3N2) is consistent with the reported mismatch between circulating and vaccine strains
    corecore