852 research outputs found
The importance of episodic accretion for low-mass star formation
A star acquires much of its mass by accreting material from a disc. Accretion
is probably not continuous but episodic. We have developed a method to include
the effects of episodic accretion in simulations of star formation. Episodic
accretion results in bursts of radiative feedback, during which a protostar is
very luminous, and its surrounding disc is heated and stabilised. These bursts
typically last only a few hundred years. In contrast, the lulls between bursts
may last a few thousand years; during these lulls the luminosity of the
protostar is very low, and its disc cools and fragments. Thus, episodic
accretion enables the formation of low-mass stars, brown dwarfs and
planetary-mass objects by disc fragmentation. If episodic accretion is a common
phenomenon among young protostars, then the frequency and duration of accretion
bursts may be critical in determining the low-mass end of the stellar initial
mass function.Comment: To appear in the Astrophysical Journal. Press release available at:
http://www.astro.cf.ac.uk/pub/Dimitrios.Stamatellos/News/News.html Full
resolution paper available at http://stacks.iop.org/0004-637X/730/3
The influence of the turbulent perturbation scale on prestellar core fragmentation and disk formation
The collapse of weakly turbulent prestellar cores is a critical stage in the
process of star formation. Being highly non-linear and stochastic, the outcome
of collapse can only be explored theoretically by performing large ensembles of
numerical simulations. Standard practice is to quantify the initial turbulent
velocity field in a core in terms of the amount of turbulent energy (or some
equivalent) and the exponent in the power spectrum (n \equiv -d log Pk /d log
k). In this paper, we present a numerical study of the influence of the details
of the turbulent velocity field on the collapse of an isolated, weakly
turbulent, low-mass prestellar core. We show that, as long as n > 3 (as is
usually assumed), a more critical parameter than n is the maximum wavelength in
the turbulent velocity field, {\lambda}_MAX. This is because {\lambda}_MAX
carries most of the turbulent energy, and thereby influences both the amount
and the spatial coherence of the angular momentum in the core. We show that the
formation of dense filaments during collapse depends critically on
{\lambda}_MAX, and we explain this finding using a force balance analysis. We
also show that the core only has a high probability of fragmenting if
{\lambda}_MAX > 0.5 R_CORE (where R_CORE is the core radius); that the dominant
mode of fragmentation involves the formation and break-up of filaments; and
that, although small protostellar disks (with radius R_DISK <= 20 AU) form
routinely, more extended disks are rare. In turbulent, low-mass cores of the
type we simulate here, the formation of large, fragmenting protostellar disks
is suppressed by early fragmentation in the filaments.Comment: 11 pages, 7 figures; accepted for publication by MNRA
The Origin and Universality of the Stellar Initial Mass Function
We review current theories for the origin of the Stellar Initial Mass
Function (IMF) with particular focus on the extent to which the IMF can be
considered universal across various environments. To place the issue in an
observational context, we summarize the techniques used to determine the IMF
for different stellar populations, the uncertainties affecting the results, and
the evidence for systematic departures from universality under extreme
circumstances. We next consider theories for the formation of prestellar cores
by turbulent fragmentation and the possible impact of various thermal,
hydrodynamic and magneto-hydrodynamic instabilities. We address the conversion
of prestellar cores into stars and evaluate the roles played by different
processes: competitive accretion, dynamical fragmentation, ejection and
starvation, filament fragmentation and filamentary accretion flows, disk
formation and fragmentation, critical scales imposed by thermodynamics, and
magnetic braking. We present explanations for the characteristic shapes of the
Present-Day Prestellar Core Mass Function and the IMF and consider what
significance can be attached to their apparent similarity. Substantial
computational advances have occurred in recent years, and we review the
numerical simulations that have been performed to predict the IMF directly and
discuss the influence of dynamics, time-dependent phenomena, and initial
conditions.Comment: 24 pages, 6 figures. Accepted for publication as a chapter in
Protostars and Planets VI, University of Arizona Press (2014), eds. H.
Beuther, R. S. Klessen, C. P. Dullemond, Th. Hennin
The Cop Number of the One-Cop-Moves Game on Planar Graphs
Cops and robbers is a vertex-pursuit game played on graphs. In the classical
cops-and-robbers game, a set of cops and a robber occupy the vertices of the
graph and move alternately along the graph's edges with perfect information
about each other's positions. If a cop eventually occupies the same vertex as
the robber, then the cops win; the robber wins if she can indefinitely evade
capture. Aigner and Frommer established that in every connected planar graph,
three cops are sufficient to capture a single robber. In this paper, we
consider a recently studied variant of the cops-and-robbers game, alternately
called the one-active-cop game, one-cop-moves game or the lazy-cops-and-robbers
game, where at most one cop can move during any round. We show that Aigner and
Frommer's result does not generalise to this game variant by constructing a
connected planar graph on which a robber can indefinitely evade three cops in
the one-cop-moves game. This answers a question recently raised by Sullivan,
Townsend and Werzanski.Comment: 32 page
Stellar Populations in STARFORGE: The Origin and Evolution of Star Clusters and Associations
Most stars form in highly clustered environments within molecular clouds, but
eventually disperse into the distributed stellar field population. Exactly how
the stellar distribution evolves from the embedded stage into gas-free
associations and (bound) clusters is poorly understood. We investigate the
long-term evolution of stars formed in the STARFORGE simulation suite -- a set
of radiation-magnetohydrodynamic simulations of star-forming turbulent clouds
that include all key stellar feedback processes inherent to star formation. We
use Nbody6++GPU to follow the evolution of the young stellar systems after gas
removal. We use HDBSCAN to define stellar groups and analyze the stellar
kinematics to identify the true bound star clusters. The conditions modeled by
the simulations, i.e., global cloud surface densities below 0.15 g cm,,
star formation efficiencies below 15%, and gas expulsion timescales shorter
than a free fall time, primarily produce expanding stellar associations and
small clusters. The largest star clusters, which have 1000 bound members,
form in the densest and lowest velocity dispersion clouds, representing
32 and 39% of the stars in the simulations, respectively. The cloud's
early dynamical state plays a significant role in setting the classical star
formation efficiency versus bound fraction relation. All stellar groups follow
a narrow mass-velocity dispersion power law relation at 10 Myr with a power law
index of 0.21. This correlation result in a distinct mass-size relationship for
bound clusters. We also provide valuable constraints on the gas dispersal
timescale during the star formation process and analyze the implications for
the formation of bound systems.Comment: 20 Pages, 10 figures, submitted to MNRA
Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study.
RESONATE-2 is a phase 3 study of first-line ibrutinib versus chlorambucil in chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). Patients aged ≥65 years (n = 269) were randomized 1:1 to once-daily ibrutinib 420 mg continuously or chlorambucil 0.5-0.8 mg/kg for ≤12 cycles. With a median (range) follow-up of 60 months (0.1-66), progression-free survival (PFS) and overall survival (OS) benefits for ibrutinib versus chlorambucil were sustained (PFS estimates at 5 years: 70% vs 12%; HR [95% CI]: 0.146 [0.098-0.218]; OS estimates at 5 years: 83% vs 68%; HR [95% CI]: 0.450 [0.266-0.761]). Ibrutinib benefit was also consistent in patients with high prognostic risk (TP53 mutation, 11q deletion, and/or unmutated IGHV) (PFS: HR [95% CI]: 0.083 [0.047-0.145]; OS: HR [95% CI]: 0.366 [0.181-0.736]). Investigator-assessed overall response rate was 92% with ibrutinib (complete response, 30%; 11% at primary analysis). Common grade ≥3 adverse events (AEs) included neutropenia (13%), pneumonia (12%), hypertension (8%), anemia (7%), and hyponatremia (6%); occurrence of most events as well as discontinuations due to AEs decreased over time. Fifty-eight percent of patients continue to receive ibrutinib. Single-agent ibrutinib demonstrated sustained PFS and OS benefit versus chlorambucil and increased depth of response over time
Interactions between brown-dwarf binaries and Sun-like stars
Several mechanisms have been proposed for the formation of brown dwarfs, but
there is as yet no consensus as to which -- if any -- are operative in nature.
Any theory of brown dwarf formation must explain the observed statistics of
brown dwarfs. These statistics are limited by selection effects, but they are
becoming increasingly discriminating. In particular, it appears (a) that brown
dwarfs that are secondaries to Sun-like stars tend to be on wide orbits, a\ga
100\,{\rm AU} (the Brown Dwarf Desert), and (b) that these brown dwarfs have a
significantly higher chance of being in a close (a\la 10\,{\rm AU}) binary
system with another brown dwarf than do brown dwarfs in the field. This then
raises the issue of whether these brown dwarfs have formed {\it in situ}, i.e.
by fragmentation of a circumstellar disc; or have formed elsewhere and
subsequently been captured. We present numerical simulations of the purely
gravitational interaction between a close brown-dwarf binary and a Sun-like
star. These simulations demonstrate that such interactions have a negligible
chance () of leading to the close brown-dwarf binary being captured by
the Sun-like star. Making the interactions dissipative by invoking the
hydrodynamic effects of attendant discs might alter this conclusion. However,
in order to explain the above statistics, this dissipation would have to favour
the capture of brown-dwarf binaries over single brown-dwarfs, and we present
arguments why this is unlikely. The simplest inference is that most brown-dwarf
binaries -- and therefore possibly also most single brown dwarfs -- form by
fragmentation of circumstellar discs around Sun-like protostars, with some of
them subsequently being ejected into the field.Comment: 10 pages, 8 figures, Accepted for publication in Astrophysics and
Space Scienc
The Green Bank Ammonia Survey: Unveiling the Dynamics of the Barnard 59 star-forming Clump
Understanding the early stages of star formation is a research field of
ongoing development, both theoretically and observationally. In this context,
molecular data have been continuously providing observational constraints on
the gas dynamics at different excitation conditions and depths in the sources.
We have investigated the Barnard 59 core, the only active site of star
formation in the Pipe Nebula, to achieve a comprehensive view of the kinematic
properties of the source. These information were derived by simultaneously
fitting ammonia inversion transition lines (1,1) and (2,2). Our analysis
unveils the imprint of protostellar feedback, such as increasing line widths,
temperature and turbulent motions in our molecular data. Combined with
complementary observations of dust thermal emission, we estimate that the core
is gravitationally bound following a virial analysis. If the core is not
contracting, another source of internal pressure, most likely the magnetic
field, is supporting it against gravitational collapse and limits its star
formation efficiency.Comment: 18 pages, 18 figure
HYPERION: An open-source parallelized three-dimensional dust continuum radiative transfer code
HYPERION is a new three-dimensional dust continuum Monte-Carlo radiative
transfer code that is designed to be as generic as possible, allowing radiative
transfer to be computed through a variety of three-dimensional grids. The main
part of the code is problem-independent, and only requires an arbitrary
three-dimensional density structure, dust properties, the position and
properties of the illuminating sources, and parameters controlling the running
and output of the code. HYPERION is parallelized, and is shown to scale well to
thousands of processes. Two common benchmark models for protoplanetary disks
were computed, and the results are found to be in excellent agreement with
those from other codes. Finally, to demonstrate the capabilities of the code,
dust temperatures, SEDs, and synthetic multi-wavelength images were computed
for a dynamical simulation of a low-mass star formation region. HYPERION is
being actively developed to include new features, and is publicly available
(http://www.hyperion-rt.org).Comment: Accepted for publication in Astronomy & Astrophysics. HYPERION is
being prepared for release at the start of 2012, but you can already sign up
to the mailing list at http://www.hyperion-rt.org to be informed once it is
available for downloa
High Velocity Molecular Outflows In Massive Cluster Forming Region G10.6-0.4
We report the arcsecond resolution SMA observations of the CO (2-1)
transition in the massive cluster forming region G10.6-0.4. In these
observations, the high velocity CO emission is resolved into individual
outflow systems, which have a typical size scale of a few arcseconds. These
molecular outflows are energetic, and are interacting with the ambient
molecular gas. By inspecting the shock signatures traced by CHOH, SiO,
and HCN emissions, we suggest that abundant star formation activities are
distributed over the entire 0.5 pc scale dense molecular envelope. The star
formation efficiency over one global free-fall timescale (of the 0.5 pc
molecular envelope, years) is about a few percent. The total
energy feedback of these high velocity outflows is higher than 10 erg,
which is comparable to the total kinetic energy in the rotational motion of the
dense molecular envelope. From order-of-magnitude estimations, we suggest that
the energy injected from the protostellar outflows is capable of balancing the
turbulent energy dissipation. No high velocity bipolar molecular outflow
associated with the central OB cluster is directly detected, which can be due
to the photo-ionization.Comment: 42 pages, 14 figures, accepted by Ap
- …