66 research outputs found
Biodiversity Impact Assessment Considering Land Use Intensities and Fragmentation
Land use is a major threat to terrestrial biodiversity.
Life cycle assessment is a tool that can assess such threats and
thereby support environmental decision-making. Within the Global
Guidance for Life Cycle Impact Assessment (GLAM) project, the
Life Cycle Initiative hosted by UN Environment aims to create a
life cycle impact assessment method across multiple impact
categories, including land use impacts on ecosystem quality
represented by regional and global species richness. A working
group of the GLAM project focused on such land use impacts and
developed new characterization factors to combine the strengths of
two separate recent advancements in the field: the consideration of
land use intensities and land fragmentation. The data sets to
parametrize the underlying model are also updated from previous
models. The new characterization factors cover five species groups (plants, amphibians, birds, mammals, and reptiles) and five broad
land use types (cropland, pasture, plantations, managed forests, and urban land) at three intensity levels (minimal, light, and
intense). They are available at the level of terrestrial ecoregions and countries. This paper documents the development of the
characterization factors, provides practical guidance for their use, and critically assesses the strengths and remaining shortcomings
Key Elements in a Framework for Land Use Impact Assessment Within LCA (11 pp)
Background, Aim and Scope: Land use by agriculture, forestry, mining, house-building or industry leads to substantial impacts, particularly on biodiversity and on soil quality as a supplier of life support functions. Unfortunately there is no widely accepted assessment method so far for land use impacts. This paper presents an attempt, within the UNEP-SETAC Life Cycle Initiative, to provide a framework for the Life Cycle Impact Assessment (LCIA) of land use. Materials and Methods: This framework builds from previous documents, particularly the SETAC book on LCIA (Lindeijer et al. 2002), developing essential issues such as the reference for occupation impacts; the impact pathways to be included in the analysis; the units of measure in the impact mechanism (land use interventions to impacts); the ways to deal with impacts in the future; and bio-geographical differentiation. Results: The paper describes the selected impact pathways, linking the land use elementary flows (occupation; transformation) and parameters (intensity) registered in the inventory (LCI) to the midpoint impact indicators and to the relevant damage categories (natural environment and natural resources). An impact occurs when the land properties are modified (transformation) and also when the current man-made properties are maintained (occupation). Discussion: The size of impact is the difference between the effect on land quality from the studied case of land use and a suitable reference land use on the same area (dynamic reference situation). The impact depends not only on the type of land use (including coverage and intensity) but is also heavily influenced by the bio-geographical conditions of the area. The time lag between the land use intervention and the impact may be large; thus land use impacts should be calculated over a reasonable time period after the actual land use finishes, at least until a new steady state in land quality is reached. Conclusions: Guidance is provided on the definition of the dynamic reference situation and on methods and time frame to assess the impacts occurring after the actual land use. Including the occupation impacts acknowledges that humans are not the sole users of land. Recommendations and Perspectives: The main damages affected by land use that should be considered by any method to assess land use impacts in LCIA are: biodiversity (existence value); biotic production potential (including soil fertility and use value of biodiversity); ecological soil quality (including life support functions of soil other than biotic production potential). Bio-geographical differentiation is required for land use impacts, because the same intervention may have different consequences depending on the sensitivity and inherent land quality of the environment where it occurs. For the moment, an indication of how such task could be done and likely bio-geographical parameters to be considered are suggested. The recommendation of indicators for the suggested impact categories is a matter of future researc
Complement component 7 is associated with total- and cardiac death in chest-pain patients with suspected acute coronary syndrome
Background
Complement activation has been associated with atherosclerosis, atherosclerotic plaque destabilization and increased risk of cardiovascular events. Complement component 7 (CC7) binds to the C5bC6 complex which is part of the terminal complement complex (TCC/C5b-9). High-sensitivity C-reactive protein (hsCRP) is a sensitive marker of systemic inflammation and may reflect the increased inflammatory state associated with cardiovascular disease.
Aim
To evaluate the associations between CC7 and total- and cardiac mortality in patients hospitalized with chest-pain of suspected coronary origin, and whether combining CC7 with hsCRP adds prognostic information.
Methods
Baseline levels of CC7 were related to 60-months survival in a prospective, observational study of 982 patients hospitalized with a suspected acute coronary syndrome (ACS) at 9 hospitals in Salta, Argentina. A cox regression model, adjusting for conventional cardiovascular risk factors, was fitted with all-cause mortality, cardiac death and sudden cardiac death (SCD) as the dependent variables. A similar Norwegian population of 871 patients was applied to test the reproducibility of results in relation to total death.
Results
At follow-up, 173 patients (17.7%) in the Argentinean cohort had died, of these 92 (9.4%) were classified as cardiac death and 59 (6.0%) as SCD. In the Norwegian population, a total of 254 patients (30%) died. In multivariable analysis, CC7 was significantly associated with 60-months all-cause mortality [hazard ratio (HR) 1.26 (95% confidence interval (CI), 1.07â1.47) and cardiac death [HR 1.28 (95% CI 1.02â1.60)], but not with SCD. CC7 was only weakly correlated with hsCRP (râ=â0.10, pâ=â0.002), and there was no statistically significant interaction between the two biomarkers in relation to outcome. The significant association of CC7 with total death was reproduced in the Norwegian population.
Conclusions
CC7 was significantly associated with all-cause mortality and cardiac death at 60-months follow-up in chest-pain patients with suspected ACS.publishedVersio
Globalization, Financial Depth, and Inequality in Sub-Saharan Africa
ISSN:0948-3349ISSN:1614-750
Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use
Purpose
Guidance is needed on best-suited indicators to quantify and monitor the man-made impacts on human health, biodiversity and resources. Therefore, the UNEP-SETAC Life Cycle Initiative initiated a global consensus process to agree on an updated overall life cycle impact assessment (LCIA) framework and to recommend a non-comprehensive list of environmental indicators and LCIA characterization factors for (1) climate change, (2) fine particulate matter impacts on human health, (3) water consumption impacts (both scarcity and human health) and 4) land use impacts on biodiversity.
Methods
The consensus building process involved more than 100 world-leading scientists in task forces via multiple workshops. Results were consolidated during a 1-week Pellston Workshopâą in January 2016 leading to the following recommendations.
Results and discussion
LCIA framework: The updated LCIA framework now distinguishes between intrinsic, instrumental and cultural values, with disability-adjusted life years (DALY) to characterize damages on human health and with measures of vulnerability included to assess biodiversity loss. Climate change impacts: Two complementary climate change impact categories are recommended: (a) The global warming potential 100 years (GWP 100) represents shorter term impacts associated with rate of change and adaptation capacity, and (b) the global temperature change potential 100 years (GTP 100) characterizes the century-scale long term impacts, both including climate-carbon cycle feedbacks for all climate forcers. Fine particulate matter (PM2.5) health impacts: Recommended characterization factors (CFs) for primary and secondary (interim) PM2.5 are established, distinguishing between indoor, urban and rural archetypes. Water consumption impacts: CFs are recommended, preferably on monthly and watershed levels, for two categories: (a) The water scarcity indicator âAWAREâ characterizes the potential to deprive human and ecosystems users and quantifies the relative Available WAter REmaining per area once the demand of humans and aquatic ecosystems has been met, and (b) the impact of water consumption on human health assesses the DALYs from malnutrition caused by lack of water for irrigated food production. Land use impacts: CFs representing global potential species loss from land use are proposed as interim recommendation suitable to assess biodiversity loss due to land use and land use change in LCA hotspot analyses.
Conclusions
The recommended environmental indicators may be used to support the UN Sustainable Development Goals in order to quantify and monitor progress towards sustainable production and consumption. These indicators will be periodically updated, establishing a process for their stewardship
Global guidance on environmental life cycle impact assessment indicators: Progress and case study
International audiencePurpose: The life cycle impact assessment (LCIA) guidance flagship project of the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative aims at providing global guidance and building scientific consensus on environmental LCIA indicators. This paper presents the progress made since 2013, preliminary results obtained for each impact category and the description of a rice life cycle assessment (LCA) case study designed to test and compare LCIA indicators. Methods: The effort has been focused in a first stage on impacts of global warming, fine particulate matter emissions, water use and land use, plus cross-cutting issues and LCA-based footprints. The paper reports the process and progress and specific results obtained in the different task forces (TFs). Additionally, a rice LCA case study common to all TF has been developed. Three distinctly different scenarios of producing and cooking rice have been defined and underlined with life cycle inventory data. These LCAs help testing impact category indicators which are being developed and/or selected in the harmonisation process. The rice LCA case study further helps to ensure the practicality of the finally recommended impact category indicators. Results and discussion: The global warming TF concludes that analysts should explore the sensitivity of LCA results to metrics other than GWP. The particulate matter TF attained initial guidance of how to include health effects from PM2.5 exposures consistently into LCIA. The biodiversity impacts of land use TF suggests to consider complementary metrics besides species richness for assessing biodiversity loss. The water use TF is evaluating two stress-based metrics, AWaRe and an alternative indicator by a stakeholder consultation. The cross-cutting issues TF agreed upon maintaining disability-adjusted life years (DALY) as endpoint unit for the safeguard subject 'human health'. The footprint TF defined main attributes that should characterise all footprint indicators. 'Rice cultivation' and 'cooking' stages of the rice LCA case study contribute most to the environmental impacts assessed. Conclusions: The results of the TF will be documented in white papers and some published in scientific journals. These white papers represent the input for the Pellston workshop', taking place in Valencia, Spain, from 24 to 29 January 2016, where best practice, harmonised LCIA indicators and an update on the general LCIA framework will be discussed and agreed on. With the diversity in results and the multi-tier supply chains, the rice LCA case study is well suited to test candidate recommended indicators and to ensure their applicability in common LCA case studies
Making sense of the minefield of footprint indicators
In recent years, footprint indicators have emerged as a popular mode of reporting environmental performance. The prospect is that these simplified metrics will guide investors, businesses, public sector policymakers and even consumers of everyday goods and services in making decisions which lead to better environmental outcomes. However, without a common âDNAâ, the ever expanding lexicon of footprints lacks coherence and may even report contradictory results for the same subject matter.(1) The danger is that this will ultimately lead to policy confusion and general mistrust of all environmental disclosures.
Footprints are especially interesting metrics because they seek to express the environmental performance of products and organizations from a life cycle perspective. The life cycle perspective is important to avoid misleading claims based only on a selected life cycle stage. For example, the water used to manufacture beverages may be important, but if a beverage includes sugar, irrigation water used to cultivate sugar cane could be a greater concern. The focus on environmental performance distinguishes footprints from technical efficiency measures, such as energy use efficiency or water use efficiency, which typically only make sense when applied to a single life cycle stage as they lack local environmental context.
However, unlike technical efficiency, which can usually be accurately measured and verified, footprint indicators, with their wider view of environmental performance, are usually calculated using models which can differ in scope, complexity and model parameter settings. Despite the noble intention of using footprints to evaluate and report environmental performance, the potential inconsistency between different approaches acts as a deterrent to use in many public policymaking and business contexts and can lead to confusing and contradictory messages in the marketplace
Directional turnover towards larger-ranged plants over time and across habitats
Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation
GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands
GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board
- âŠ