6 research outputs found

    Involvement of neuronal cannabinoid receptor CB1 in regulation of bone mass and bone remodeling.

    No full text
    The CB1 cannabinoid receptor has been implicated in the regulation of bone remodeling and bone mass. A high bone mass (HBM) phenotype was reported in CB1-null mice generated on a CD1 background (CD1(CB1-/-) mice). By contrast, our preliminary studies in cb1-/- mice, backcrossed to C57BL/6J mice (C57(CB1-/-) mice), revealed low bone mass (LBM). We therefore analyzed CB1 expression in bone and compared the skeletons of sexually mature C57(CB1-/-) and CD1(CB1-/-) mice in the same experimental setting. CB1 mRNA is weakly expressed in osteoclasts and immunoreactive CB1 is present in sympathetic neurons, close to osteoblasts. In addition to their LBM, male and female C57(CB1-/-) mice exhibit decreased bone formation rate and increased osteoclast number. The skeletal phenotype of the CD1(CB1-/-) mice shows a gender disparity. Female mice have normal trabecular bone with a slight cortical expansion, whereas male CD1(CB1-/-) animals display an HBM phenotype. We were surprised to find that bone formation and resorption are within normal limits. These findings, at least the consistent set of data obtained in the C57(CB1-/-) line, suggest an important role for CB1 signaling in the regulation of bone remodeling and bone mass. Because sympathetic CB1 signaling inhibits norepinephrine (NE) release in peripheral tissues, part of the endocannabinoid activity in bone may be attributed to the regulation of NE release from sympathetic nerve fibers. Several phenotypic discrepancies have been reported between C57(CB1-/-) and CD1(CB1-/-) mice that could result from genetic differences between the background strains. Unraveling these differences can provide useful information on the physiologic functional milieu of CB1 in bone.Journal ArticleResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass

    No full text
    Bone mass is determined by a continuous remodeling process, whereby the mineralized matrix is being removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. Here we report the presence of endogenous amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) in mouse bone. Of these compounds, N-oleoyl-l-serine (OS) had the highest activity in an osteoblast proliferation assay. In these cells, OS triggers a Gi-protein-coupled receptor and Erk1/2. It also mitigates osteoclast number by promoting osteoclast apoptosis through the inhibition of Erk1/2 phosphorylation and receptor activator of nuclear-κB ligand (RANKL) expression in bone marrow stromal cells and osteoblasts. In intact mice, OS moderately increases bone volume density mainly by inhibiting bone resorption. However, in a mouse ovariectomy (OVX) model for osteoporosis, OS effectively rescues bone loss by increasing bone formation and markedly restraining bone resorption. The differential effect of exogenous OS in the OVX vs. intact animals is apparently a result of an OVX-induced decrease in skeletal OS levels. These data show that OS is a previously unexplored lipid regulator of bone remodeling. It represents a lead to antiosteoporotic drug discovery, advantageous to currently available therapies, which are essentially either proformative or antiresorptive

    Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science

    No full text
    corecore