18 research outputs found
PageMan: An interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments
BACKGROUND: Microarray technology has become a widely accepted and standardized tool in biology. The first microarray data analysis programs were developed to support pair-wise comparison. However, as microarray experiments have become more routine, large scale experiments have become more common, which investigate multiple time points or sets of mutants or transgenics. To extract biological information from such high-throughput expression data, it is necessary to develop efficient analytical platforms, which combine manually curated gene ontologies with efficient visualization and navigation tools. Currently, most tools focus on a few limited biological aspects, rather than offering a holistic, integrated analysis. RESULTS: Here we introduce PageMan, a multiplatform, user-friendly, and stand-alone software tool that annotates, investigates, and condenses high-throughput microarray data in the context of functional ontologies. It includes a GUI tool to transform different ontologies into a suitable format, enabling the user to compare and choose between different ontologies. It is equipped with several statistical modules for data analysis, including over-representation analysis and Wilcoxon statistical testing. Results are exported in a graphical format for direct use, or for further editing in graphics programs. PageMan provides a fast overview of single treatments, allows genome-level responses to be compared across several microarray experiments covering, for example, stress responses at multiple time points. This aids in searching for trait-specific changes in pathways using mutants or transgenics, analyzing development time-courses, and comparison between species. In a case study, we analyze the results of publicly available microarrays of multiple cold stress experiments using PageMan, and compare the results to a previously published meta-analysis. PageMan offers a complete user's guide, a web-based over-representation analysis as well as a tutorial, and is freely available at . CONCLUSION: PageMan allows multiple microarray experiments to be efficiently condensed into a single page graphical display. The flexible interface allows data to be quickly and easily visualized, facilitating comparisons within experiments and to published experiments, thus enabling researchers to gain a rapid overview of the biological responses in the experiments
Introgression and repeated co-option facilitated the recurrent emergence of C4 photosynthesis among close relatives.
The origins of novel traits are often studied using species trees and modeling phenotypes as different states of the same character, an approach that cannot always distinguish multiple origins from fewer origins followed by reversals. We address this issue by studying the origin of C4 photosynthesis, an adaptation to warm and dry conditions, in the grass Alloteropsis. We dissect the C4 trait into its components, and show two independent origins of the C4 phenotype via different anatomical modifications, and the use of distinct sets of genes. Further, inference of enzyme adaptation suggests that one of the two groups encompasses two transitions to a full C4 state from a common ancestor with an intermediate phenotype that had some C4 anatomical and biochemical components. Molecular dating of C4 genes confirms the introgression of two key C4 components between species, while the inheritance of all others matches the species tree. The number of origins consequently varies among C4 components, a scenario that could not have been inferred from analyses of the species tree alone. Our results highlight the power of studying individual components of complex traits to reconstruct trajectories toward novel adaptations
Efficient acclimation of the chloroplast antioxidant defence of Arabidopsis thaliana leaves in response to a 10- or 100-fold light increment and the possible involvement of retrograde signals
Chloroplasts are equipped with a nuclear-encoded antioxidant defence system the components of which are usually expressed at high transcript and activity levels. To significantly challenge the chloroplast antioxidant system, Arabidopsis thaliana plants, acclimated to extremely low light slightly above the light compensation point or to normal growth chamber light, were moved to high light corresponding to a 100- and 10-fold light jump, for 6 h and 24 h in order to observe the responses of the water–water cycle at the transcript, protein, enzyme activity, and metabolite levels. The plants coped efficiently with the high light regime and the photoinhibition was fully reversible. Reactive oxygen species (ROS), glutathione and ascorbate levels as well as redox states, respectively, revealed no particular oxidative stress in low-light-acclimated plants transferred to 100-fold excess light. Strong regulation of the water–water cycle enzymes at the transcript level was only partly reflected at the protein and activity levels. In general, low light plants had higher stromal (sAPX) and thylakoid ascorbate peroxidase (tAPX), dehydroascorbate reductase (DHAR), and CuZn superoxide dismutase (CuZnSOD) protein contents than normal light-grown plants. Mutants defective in components relevant for retrograde signalling, namely stn7, ex1, tpt1, and a mutant expressing E .coli catalase in the chloroplast showed unaltered transcriptional responses of water–water cycle enzymes. These findings, together with the response of marker transcripts, indicate that abscisic acid is not involved and that the plastoquinone redox state and reactive oxygen species do not play a major role in regulating the transcriptional response at t=6 h, while other marker transcripts suggest a major role for reductive power, metabolites, and lipids as signals for the response of the water–water cycle
Dance in the body, the mind and the brain: neurocognitive research inspired by dancers and their audience
Bläsing B. Dance in the body, the mind and the brain: neurocognitive research inspired by dancers and their audience. In: Karkov V, Oliver S, Lycouris S, eds. The Oxford Handbook for Dance and Wellbeing. Oxford University Press; 2017: 41-56
Sugars and Circadian Regulation Make Major Contributions to the Global Regulation of Diurnal Gene Expression in Arabidopsis
The diurnal cycle strongly influences many plant metabolic and physiological processes. Arabidopsis thaliana rosettes were harvested six times during 12-h-light/12-h-dark treatments to investigate changes in gene expression using ATH1 arrays. Diagnostic gene sets were identified from published or in-house expression profiles of the response to light, sugar, nitrogen, and water deficit in seedlings and 4 h of darkness or illumination at ambient or compensation point [CO(2)]. Many sugar-responsive genes showed large diurnal expression changes, whose timing matched that of the diurnal changes of sugars. A set of circadian-regulated genes also showed large diurnal changes in expression. Comparison of published results from a free-running cycle with the diurnal changes in Columbia-0 (Col-0) and the starchless phosphoglucomutase (pgm) mutant indicated that sugars modify the expression of up to half of the clock-regulated genes. Principle component analysis identified genes that make large contributions to diurnal changes and confirmed that sugar and circadian regulation are the major inputs in Col-0 but that sugars dominate the response in pgm. Most of the changes in pgm are triggered by low sugar levels during the night rather than high levels in the light, highlighting the importance of responses to low sugar in diurnal gene regulation. We identified a set of candidate regulatory genes that show robust responses to alterations in sugar levels and change markedly during the diurnal cycle
A fluorometric assay for trehalose in the picomole range
The fluorometric assay is highly specific for trehalose and sensitive enough to measure the trehalose content of very small amounts of plant tissue. Chilling induced a 2-fold accumulation of trehalose in A. thaliana rosettes, but the levels were too low to make a substantial quantitative contribution to osmoregulation. Trehalose is unlikely to function as a signal of sucrose status. The abnormal inflorescence branching phenotype of the maize ramosa3 mutant might be linked to a decrease in trehalose levels in the inflorescence primordia or a downward shift in the trehalose:Tre6P ratio