424 research outputs found

    Inhibitory mechanisms of LAG-3–dependent T cell suppression

    Get PDF
    T cell activation is tightly regulated by both stimulatory and inhibitory co-receptors and has been a focus in the development of interventions for managing cancer or autoimmune diseases. Targeting the inhibitory co-receptors programmed cell death 1 (PD-1) and cytotoxic T lymphocyte–associated protein 4 (CTLA-4) has successfully eradicated tumors but induced immune-related adverse events in humans and mice. The beneficial and adverse effects of targeting these co-receptors highlight their importance in cancer immunity and also autoimmunity. Although the therapeutic potencies of other inhibitory co-receptors are under extensive investigation, their inhibitory mechanisms and their functional differences are not well understood. Here we analyzed the inhibitory mechanisms of lymphocyte activation gene-3 (LAG-3), another inhibitory co-receptor, by using an in vitro T cell activation system and a high-affinity anti-LAG-3 antibody that strongly interferes with the binding of LAG-3 to its ligand. We found that the expression level of LAG-3 strongly correlates with the inhibitory function of LAG-3, suggesting that LAG-3 functions as a rheostat rather than as a breaker of T cell activation. By evaluating the inhibitory capacities of various LAG-3 variants relative to their expression levels, we found that LAG-3 transduces two independent inhibitory signals through an FXXL motif in the membrane-proximal region and the C-terminal EX repeat. These motifs have not been reported previously for inhibitory co-receptors, suggesting that LAG-3 inhibits T cell activation through a nonredundant inhibitory mechanisms along with the other inhibitory co-receptors. Our findings provide a rationale for combinatorial targeting of LAG-3 and the other inhibitory co-receptors to improve cancer immunotherapy

    Glucocorticoids strengthen PD-1 effects

    Get PDF
    The inhibitory co-receptor programmed cell death 1 (PD-1, Pdcd1) plays critical roles in the regulation of autoimmunity, anti-cancer immunity, and immunity against infections. Immunotherapies targeting PD-1 have revolutionized cancer management and instigated various trials of improved cancer immunotherapies. Moreover, extensive trials are underway to potentiate PD-1 function in order to suppress harmful immune responses. Here, we found that both natural and synthetic glucocorticoids (GCs) up-regulate PD-1 on T cells without altering the expression levels of other co-receptors and cell-surface molecules. The GC-induced up-regulation of PD-1 depended on the transactivation of PD-1 transcription mediated through the glucocorticoid receptor (GR). We further found that a GC response element (GRE) 2525 bp upstream from the transcription start site of Pdcd1 is responsible for GC-mediated transactivation. We also observed that in vivo administration of GCs significantly up-regulates PD-1 expression on tumor-infiltrating T cells. By analyzing T cells differing in PD-1 expression, we directly demonstrated that the amount of PD-1 on the cell surface correlates with its inhibitory effect. Accordingly, GCs potentiated the capacity of PD-1 to inhibit T cell activation, suggesting that this PD-1-mediated inhibition contributes, at least in part, to the anti-inflammatory and immunosuppressive effects of GCs. In light of the critical roles of PD-1 in the regulation of autoimmunity regulation, we expect that the potentiation of PD-1 activity may offer a promising therapeutic strategy for managing inflammatory and autoimmune diseases. Our current findings provide a rationale for strategies seeking to enhance the inhibitory effect of PD-1 by increasing its expression level

    PD-1 Primarily Inhibits TCR Signal

    Get PDF
    Cancer-immunotherapy targeting programmed cell death 1 (PD-1) activates tumor-specific T cells and provides clinical benefits in various cancers. However, the molecular basis of PD-1 function is still enigmatic. Especially, it is unclear which signaling pathway PD-1 primarily targets. Besides, the capacity of PD-1 to inhibit the T cell receptor (TCR)-dependent activation of T cells in the presence of co-stimulation is also controversial. Here we used co-culture systems of T cells and antigen-presenting cells with targeted deletion and overexpression of co-receptors and ligands and examined the inhibitory potency of PD-1 against T cell activation upon TCR stimulation with CD28 and ICOS co-stimulation. As an unambiguous criterion of T cell activation, we used the acquisition of cytokine production capacity, which represents one of the most important functions of T cells. PD-1 inhibited functional T cell activation upon TCR stimulation in the absence as well as in the presence of CD28 co-stimulation, indicating that PD-1 can directly inhibit TCR signal. Notably, CD28 co-stimulation rather attenuated the efficiency of PD-1 in inhibiting TCR-dependent functional T cell activation. In addition, PD-1 inhibited TCR-dependent functional T cell activation with ICOS co-stimulation as efficiently as that with CD28 co-stimulation. Furthermore, we found that the maintenance of antigen-induced follicular helper T (TFH) cells that required ICOS co-stimulation was persistently restrained by PD-1 in vivo. These findings indicate that PD-1 primarily targets TCR signal in the inhibition of functional T cell activation. Thus, PD-1 functions as the rheostat of T cell activation rather than an inhibitor of a specific stimulatory co-receptor

    PD-1は自己反応性CD8陽性T細胞の活性化経路を遮断して細胞傷害機能の獲得を阻止する

    Get PDF
    Anti-PD-1 therapy can induce eradication of tumors and immune-related adverse events (irAEs) in humans and model animals. However, how anti-PD-1 therapy modifies cellular phenotypes of CD8+ T cells to destroy tumors and damage self-tissues remains to be clarified. Here we performed single-cell mRNA expression profiling of autoreactive CD8+ T cells under or beyond PD-1 suppression in target tissues and reconstructed their activation trajectory. Autoreactive CD8+ T cells went through four activation phases and PD-1 strongly attenuated the transition from the second- to the third-phase, where effector functions were acquired. Shifts in cluster composition of autoreactive CD8+ T cells markedly reflected the severity of autoimmunity. In addition, genes up-regulated along the activation-trajectory in autoimmunity were highly expressed in responders of melanoma patients in anti-PD-1 therapy, suggesting that tumor-specific T cells need to be activated in a similar trajectory to destroy tumors in human patients upon PD-1 blockade. These findings reveal that PD-1 blockade facilitates the activation trajectory of CD8+ T cells to boost their effector functions. Targeted manipulation of the trajectory could lead to new therapeutic opportunities

    PD-1はCD27およびGITRを介した共刺激存在下でもT細胞活性化を効率的に抑制する

    Get PDF
    Cancer immunotherapies targeting programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 revolutionized cancer treatment and instigated various trials to develop new cancer immunotherapies with higher therapeutic efficacy. Agonistic Abs against tumor necrosis factor receptor super family (TNFRSF) molecules are highly expected due to their high potential to enhance survival, proliferation, and effector function of T cells. To date, agonistic antibodies (Abs) against CD27, GITR, OX40, and 4-1BB have been reported to increase the efficacy of anti-PD-1 therapy in animal models and clinical trials of these combinatorial therapies are underway. However, the mechanisms how agonistic Abs against TNFRSF molecules potentiate anti-PD-1 therapy are not well understood. Here we examined the potency of PD-1 to inhibit the antigen-dependent activation of T cells in the presence of co-stimulation through CD27 and GITR by using in vitro and ex vivo co-culture systems of T cells and antigen presenting cells. The cytokine secretion from T cells upon antigen stimulation was strongly augmented by the engagement of CD27 or GITR with their corresponding ligands. Remarkably, PD-1 efficiently inhibited the activation of T cells even in the presence of co-stimulation through CD27 or GITR. Accordingly, cytokine secretion was synergistically augmented when PD-1 blockade was combined with triggering of CD27 or GITR. These results indicate that the triggering of TNFRSF molecules and PD-1 blockade can act on the same individual cells simultaneously to augment the magnitude of T cell activation, providing the rationale for the combinatorial usage of agonistic Abs against TNFRSF molecules and blocking Abs against PD-1 or PD-L1

    PD-1 Primarily Targets TCR Signal in the Inhibition of Functional T Cell Activation

    Get PDF
    Cancer-immunotherapy targeting programmed cell death 1 (PD-1) activates tumor-specific T cells and provides clinical benefits in various cancers. However, the molecular basis of PD-1 function is still enigmatic. Especially, it is unclear which signaling pathway PD-1 primarily targets. Besides, the capacity of PD-1 to inhibit the T cell receptor (TCR)-dependent activation of T cells in the presence of co-stimulation is also controversial. Here we used co-culture systems of T cells and antigen-presenting cells with targeted deletion and overexpression of co-receptors and ligands and examined the inhibitory potency of PD-1 against T cell activation upon TCR stimulation with CD28 and ICOS co-stimulation. As an unambiguous criterion of T cell activation, we used the acquisition of cytokine production capacity, which represents one of the most important functions of T cells. PD-1 inhibited functional T cell activation upon TCR stimulation in the absence as well as in the presence of CD28 co-stimulation, indicating that PD-1 can directly inhibit TCR signal. Notably, CD28 co-stimulation rather attenuated the efficiency of PD-1 in inhibiting TCR-dependent functional T cell activation. In addition, PD-1 inhibited TCR-dependent functional T cell activation with ICOS co-stimulation as efficiently as that with CD28 co-stimulation. Furthermore, we found that the maintenance of antigen-induced follicular helper T (TFH) cells that required ICOS co-stimulation was persistently restrained by PD-1 in vivo. These findings indicate that PD-1 primarily targets TCR signal in the inhibition of functional T cell activation. Thus, PD-1 functions as the rheostat of T cell activation rather than an inhibitor of a specific stimulatory co-receptor

    Constitutive Expression of AID Leads to Tumorigenesis

    Get PDF
    Genome stability is regulated by the balance between efficiencies of the repair machinery and genetic alterations such as mutations and chromosomal rearrangements. It has been postulated that deregulation of class switch recombination (CSR) and somatic hypermutation (SHM), which modify the immunoglobulin (Ig) genes in activated B cells, may be responsible for aberrant chromosomal translocations and mutations of non-Ig genes that lead to lymphocyte malignancy. However, the molecular basis for these genetic instabilities is not clearly understood. Activation-induced cytidine deaminase (AID) is shown to be essential and sufficient to induce both CSR and SHM in artificial substrates in fibroblasts as well as B cells. Here we show that constitutive and ubiquitous expression of AID in transgenic mice caused both T cell lymphomas and dysgenetic lesions of epithelium of respiratory bronchioles (micro-adenomas) in all individual mice. Point mutations, but not translocations, were massively introduced in expressed T cell receptor (TCR) and c-myc genes in T lymphoma cells. The results indicate that AID can mutate non-Ig genes including oncogenes, implying that aberrant AID expression could be a cause of human malignancy

    Paradoxical development of polymyositis-like autoimmunity through augmented expression of autoimmune regulator (AIRE)

    Get PDF
    Autoimmunity is prevented by the function of the autoimmune regulator [AIRE (Aire in mice)], which promotes the expression of a wide variety of tissue-restricted antigens (TRAs) from medullary thymic epithelial cells (mTECs) and from a subset of peripheral antigen-presenting cells (APCs). We examined the effect of additive expression of human AIRE (huAIRE) in a model of autoimmune diabetes in NOD mice. Unexpectedly, we observed that mice expressing augmented AIRE/Aire developed muscle-specific autoimmunity associated with incomplete maturation of mTECs together with impaired expression of Aire-dependent TRAs. This led to failure of deletion of autoreactive T cells together with dramatically reduced production of regulatory T cells in the thymus. In peripheral APCs, expression of costimulatory molecules was augmented. We suggest that levels of Aire expression need to be tightly controlled for maintenance of immunological tolerance. Our results also highlight the importance of coordinated action between central tolerance and peripheral tolerance under the common control of Aire

    Search for High-Mass Resonances Decaying to τν in pp Collisions at √s=13 TeV with the ATLAS Detector

    Get PDF
    A search for high-mass resonances decaying to τν using proton-proton collisions at √s=13 TeV produced by the Large Hadron Collider is presented. Only τ-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb−1. No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible τν production cross section. Heavy W′ bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal G(221) model are excluded at the 95% credibility level
    corecore