127 research outputs found

    Using ChatOps to Achieve Continuous Certification of Cloud Services

    Get PDF
    Continuous service certification (CSC) recently emerged as a promising means to provide ongoing assurances and disrupt pertinent certification approaches. CSC involves the consistent gathering and assessing of certification-relevant data by certification authorities about service operation to validate ongoing adherence to certification criteria. While research on CSC is increasing, practitioners still struggle in transferring researchers' suggestions and guidelines into practice. This study provides a tentative design and a prototype of a monitoring-based service certification (MSC) system based on the novel ChatOps approach. Iterative evaluations support our propositions that ChatOps' three key elements, a chat platform, chatbots, and third-party integrations, support the achievement of CSC. We contribute to research and practice by proving the technical feasibility of an MSC system, guiding future research and practitioners on achieving monitoring-based CSC, and validate the applicability and usefulness of extant guidelines on monitoring-based CSC proposed by prior research

    Mutational analysis of the HIV-1 auxiliary protein Vif identifies independent domains important for the physical and functional interaction with HIV-1 reverse transcriptase

    Get PDF
    The HIV-1 accessory protein Vif plays a dual role: it counteracts the natural restriction factors APOBEC3G and 3F and ensures efficient retrotranscription of the HIV-1 RNA genome. We have previously shown that Vif can act as an auxiliary factor for HIV-1 reverse transcriptase (RT), increasing its rate of association to RNA or DNA templates. Here, by using seven different Vif mutants, we provide in vitro evidences that Vif stimulates HIV-1 RT through direct protein–protein interaction, which is mediated by its C-terminal domain. Physical interaction appears to require the proline-rich region comprised between amino acid (aa) 161 and 164 of Vif, whereas the RT stimulatory activity requires, in addition, the extreme C-terminal region (aa 169–192) of the Vif protein. Neither the RNA interaction domain, nor the Zn++-binding domain of Vif are required for its interaction with the viral RT. Pseudotyped HIV-1 lentiviral vectors bearing Vif mutants deleted in the RNA- or RT-binding domains show defects in retrotranscription/integration processes in both permissive and nonpermissive cells. Our results broaden our knowledge on how three important functions of Vif (RNA binding, RT binding and stimulation and Zn++ binding), are coordinated by different domains

    Coreceptor Usage by HIV-1 and HIV-2 Primary Isolates: The Relevance of CCR8 Chemokine Receptor as an Alternative Coreceptor

    Get PDF
    The human immunodeficiency virus replication cycle begins by sequential interactions between viral envelope glycoproteins with CD4 molecule and a member of the seven-transmembrane, G-protein-coupled, receptors' family (coreceptor). In this report we focused on the contribution of CCR8 as alternative coreceptor for HIV-1 and HIV-2 isolates. We found that this coreceptor was efficiently used not only by HIV-2 but particularly by HIV-1 isolates. We demonstrate that CXCR4 usage, either alone or together with CCR5 and/or CCR8, was more frequently observed in HIV-1 than in HIV-2 isolates. Directly related to this is the finding that the non-usage of CXCR4 is significantly more common in HIV-2 isolates; both features could be associated with the slower disease progression generally observed in HIV-2 infected patients. The ability of some viral isolates to use alternative coreceptors besides CCR5 and CXCR4 could further impact on the efficacy of entry inhibitor therapy and possibly also in HIV pathogenesis

    Effect of human immunodeficiency virus on blood-brain barrier integrity and function: an update

    Get PDF
    The blood-brain barrier (BBB) is a diffusion barrier that has an important role in maintaining a precisely regulated microenvironment protecting the neural tissue from infectious agents and toxins in the circulating system. Compromised BBB integrity plays a major role in the pathogenesis of retroviral associated neurological diseases. Human Immunodeficiency Virus (HIV) infection in the Central Nervous System (CNS) is an early event even before the serodiagnosis for HIV positivity or the initiation of antiretroviral therapy (ART), resulting in neurological complications in many of the infected patients. Macrophages, microglia and astrocytes (in low levels) are the most productively/latently infected cell types within the CNS. In this brief review, we have discussed about the effect of HIV infection and viral proteins on the integrity and function of BBB, which may contribute to the progression of HIV associated neurocognitive disorders

    Persistence of viral reservoirs in multiple tissues after antiretroviral therapy suppression in a macaque RT-SHIV model

    Get PDF
    Although antiretroviral therapy (ART) can suppress HIV-1 replication sufficiently to eliminate measurable plasma viremia, infected cells remain and ensure viral recrudescence after discontinuation of ART. We used a macaque model of HIV-1/AIDS to evaluate the location of infected cells during ART. Twelve macaques were infected with RT-SHIVmne, a SIV containing HIV-1 reverse transcriptase, conferring sensitivity to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Ten to fourteen weeks post-infection, 6 animals were treated with 3 or 4 antiretroviral drugs for 17-20 weeks; 6 control animals remained untreated. Viral DNA (vDNA) and RNA (vRNA) were measured in peripheral blood mononuclear cells (PBMC) and at necropsy in multiple tissues by quantitative PCR and RT-PCR. The majority of virally infected cells were located in lymphoid tissues with variable levels in the gastrointestinal tract of both treated and untreated animals. Tissue viral DNA levels correlated with week 1 plasma viremia, suggesting that tissues that harbor proviral DNA are established within the first week of infection. PBMC vDNA levels did not correlate with plasma viremia or tissue levels of vDNA. vRNA levels were high in lymphoid and gastrointestinal tissues of the untreated animals; animals on ART had little vRNA expressed in tissues and virus could not be cultured from lymph node resting CD4+ cells after 17-20 weeks on ART, indicating little or no ongoing viral replication. Strategies for eradication of HIV-1 will need to target residual virus in ART suppressed individuals, which may not be accurately reflected by frequencies of infected cells in blood. © 2013 Kline et al

    Macrophage entry mediated by HIV Envs from brain and lymphoid tissues is determined by the capacity to use low CD4 levels and overall efficiency of fusion

    Get PDF
    AbstractHIV infects macrophages and microglia in the central nervous system (CNS), which express lower levels of CD4 than CD4+ T cells in peripheral blood. To investigate mechanisms of HIV neurotropism, full-length env genes were cloned from autopsy brain and lymphoid tissues from 4 AIDS patients with HIV-associated dementia (HAD). Characterization of 55 functional Env clones demonstrated that Envs with reduced dependence on CD4 for fusion and viral entry are more frequent in brain compared to lymphoid tissue. Envs that mediated efficient entry into macrophages were frequent in brain but were also present in lymphoid tissue. For most Envs, entry into macrophages correlated with overall fusion activity at all levels of CD4 and CCR5. gp160 nucleotide sequences were compartmentalized in brain versus lymphoid tissue within each patient. Proline at position 308 in the V3 loop of gp120 was associated with brain compartmentalization in 3 patients, but mutagenesis studies suggested that P308 alone does not contribute to reduced CD4 dependence or macrophage-tropism. These results suggest that HIV adaptation to replicate in the CNS selects for Envs with reduced CD4 dependence and increased fusion activity. Macrophage-tropic Envs are frequent in brain but are also present in lymphoid tissues of AIDS patients with HAD, and entry into macrophages in the CNS and other tissues is dependent on the ability to use low receptor levels and overall efficiency of fusion

    HIV-1 Replication in the Central Nervous System Occurs in Two Distinct Cell Types

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) can lead to the development of HIV-1-associated dementia (HAD). We examined the virological characteristics of HIV-1 in the cerebrospinal fluid (CSF) of HAD subjects to explore the association between independent viral replication in the CNS and the development of overt dementia. We found that genetically compartmentalized CCR5-tropic (R5) T cell-tropic and macrophage-tropic HIV-1 populations were independently detected in the CSF of subjects diagnosed with HIV-1-associated dementia. Macrophage-tropic HIV-1 populations were genetically diverse, representing established CNS infections, while R5 T cell-tropic HIV-1 populations were clonally amplified and associated with pleocytosis. R5 T cell-tropic viruses required high levels of surface CD4 to enter cells, and their presence was correlated with rapid decay of virus in the CSF with therapy initiation (similar to virus in the blood that is replicating in activated T cells). Macrophage-tropic viruses could enter cells with low levels of CD4, and their presence was correlated with slow decay of virus in the CSF, demonstrating a separate long-lived cell as the source of the virus. These studies demonstrate two distinct virological states inferred from the CSF virus in subjects diagnosed with HAD. Finally, macrophage-tropic viruses were largely restricted to the CNS/CSF compartment and not the blood, and in one case we were able to identify the macrophage-tropic lineage as a minor variant nearly two years before its expansion in the CNS. These results suggest that HIV-1 variants in CSF can provide information about viral replication and evolution in the CNS, events that are likely to play an important role in HIV-associated neurocognitive disorders

    Evidence for Limited Genetic Compartmentalization of HIV-1 between Lung and Blood

    Get PDF
    BACKGROUND:HIV-1 is frequently detected in the lungs of infected individuals and is likely important in the development of pulmonary opportunistic infections. The unique environment of the lung, rich in alveolar macrophages and with specialized local immune responses, may contribute to differential evolution or selection of HIV-1. METHODOLOGY AND FINDINGS:We characterized HIV-1 in the lung in relation to contemporaneous viral populations in the blood. The C2-V5 region of HIV-1 env was sequenced from paired lung (induced sputum or bronchoalveolar lavage) and blood (plasma RNA and proviral DNA from sorted or unsorted PBMC) from 18 subjects. Compartmentalization between tissue pairs was assessed using 5 established tree or distance-based methods, including permutation tests to determine statistical significance. We found statistical evidence of compartmentalization between lung and blood in 10/18 subjects, although lung and blood sequences were intermingled on phylogenetic trees in all subjects. The subject showing the greatest compartmentalization contained many nearly identical sequences in BAL sample, suggesting clonal expansion may contribute to reduced viral diversity in the lung in some cases. However, HIV-1 sequences in lung were not more homogeneous overall, nor were we able to find a lung-specific genotype associated with macrophage tropism in V3. In all four subjects in whom predicted X4 genotypes were found in blood, predicted X4 genotypes were also found in lung. CONCLUSIONS:Our results support a picture of continuous migration of HIV-1 between circulating blood and lung tissue, with perhaps a very limited degree of localized evolution or clonal replication

    HIV-2 interaction with cell coreceptors: amino acids within the V1/V2 region of viral envelope are determinant for CCR8, CCR5 and CXCR4 usage

    Get PDF
    © 2014 Santos-Costa et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: Human immunodeficiency virus 1 and 2 (HIV-1 and HIV-2) use cellular receptors in distinct ways. Besides a more promiscuous usage of coreceptors by HIV-2 and a more frequent detection of CD4-independent HIV-2 isolates, we have previously identified two HIV-2 isolates (HIV-2MIC97 and HIV-2MJC97) that do not use the two major HIV coreceptors: CCR5 and CXCR4. All these features suggest that in HIV-2 the Env glycoprotein subunits may have a different structural organization enabling distinct - although probably less efficient - interactions with cellular receptors. Results: By infectivity assays using GHOST cell line expressing CD4 and CCR8 and blocking experiments using CCR8-specific ligand, I-309, we show that efficient replication of HIV-2MIC97 and HIV-2MJC97 requires the presence of CCR8 at plasma cell membrane. Additionally, we disclosed the determinants of chemokine receptor usage at the molecular level, and deciphered the amino acids involved in the usage of CCR8 (R8 phenotype) and in the switch from CCR8 to CCR5 or to CCR5/CXCR4 usage (R5 or R5X4 phenotype). The data obtained from site-directed mutagenesis clearly indicates that the main genetic determinants of coreceptor tropism are located within the V1/V2 region of Env surface glycoprotein of these two viruses. Conclusions: We conclude that a viral population able to use CCR8 and unable to infect CCR5 or CXCR4-positive cells, may exist in some HIV-2 infected individuals during an undefined time period, in the course of the asymptomatic stage of infection. This suggests that in vivo alternate molecules might contribute to HIV infection of natural target cells, at least under certain circumstances. Furthermore we provide direct and unequivocal evidence that the usage of CCR8 and the switch from R8 to R5 or R5X4 phenotype is determined by amino acids located in the base and tip of V1 and V2 loops of HIV-2 Env surface glycoprotein.This work was supported by grants from: Fundação para a Ciência e Tecnologia (FCT; PPCDT/SAU-IMI/55726/2004); Fundação para a Ciência e Tecnologia and Ministério da Saúde de Portugal (VIH/SAU/0006/2011); and from Gilead Sciences Portugal (Programa Gilead Génese).info:eu-repo/semantics/publishedVersio

    Transfusion-transmitted infections

    Get PDF
    Although the risk of transfusion-transmitted infections today is lower than ever, the supply of safe blood products remains subject to contamination with known and yet to be identified human pathogens. Only continuous improvement and implementation of donor selection, sensitive screening tests and effective inactivation procedures can ensure the elimination, or at least reduction, of the risk of acquiring transfusion transmitted infections. In addition, ongoing education and up-to-date information regarding infectious agents that are potentially transmitted via blood components is necessary to promote the reporting of adverse events, an important component of transfusion transmitted disease surveillance. Thus, the collaboration of all parties involved in transfusion medicine, including national haemovigilance systems, is crucial for protecting a secure blood product supply from known and emerging blood-borne pathogens
    corecore