
Using ChatOps to Achieve Continuous Certification of Cloud Services

Paul Ohagen Sebastian Lins Scott Thiebes Ali Sunyaev

HECTOR School of Man-

agement and Engineering,

paul.ohagen@icloud.com

Karlsruhe Institute of

Technology,

lins@kit.edu

Karlsruhe Institute of

Technology,

thiebes@kit.edu

Karlsruhe Institute of

Technology,

sunyaev@kit.edu

Abstract
Continuous service certification (CSC) recently

emerged as a promising means to provide ongoing as-

surances and disrupt pertinent certification ap-

proaches. CSC involves the consistent gathering and

assessing of certification-relevant data by certifica-

tion authorities about service operation to validate on-

going adherence to certification criteria. While re-

search on CSC is increasing, practitioners still strug-

gle in transferring researchers' suggestions and

guidelines into practice. This study provides a tenta-

tive design and a prototype of a monitoring-based ser-

vice certification (MSC) system based on the novel

ChatOps approach. Iterative evaluations support our

propositions that ChatOps' three key elements, a chat

platform, chatbots, and third-party integrations, sup-

port the achievement of CSC. We contribute to re-

search and practice by proving the technical feasibil-

ity of an MSC system, guiding future research and

practitioners on achieving monitoring-based CSC,

and validate the applicability and usefulness of extant

guidelines on monitoring-based CSC proposed by

prior research.

1. Introduction

Consumers now have ample access to an unfore-

seen variety of digital services to manage office and

business tasks, track their health and fitness, make

payments, and listen to music, among others. Contin-

uous service certification (CSC) recently emerged as a

promising means to provide consumers with ongoing

assurances of important service properties, such as se-

curity or data protection [1, 2, 3]. More importantly,

CSC innovates pertinent certification approaches in

highly dynamic service environments (e.g., cloud

computing). In its basic sense, CSC involves the con-

sistent gathering and assessing of certification-rele-

vant data by certification authorities about service op-

eration to validate ongoing adherence to certification

criteria. CSC utilizes innovative monitoring and audit-

ing techniques to continuously assess services' adher-

ence, such as autonomous, intelligent agents, intercep-

tors, and automated log inspection techniques [1]. De-

spite its recent emergence, CSC already gained high

importance, as can been seen by the funding of further

CSC research projects (e.g., MEDINA funded by the

EU), and the incorporation of CSC in novel certifica-

tions (e.g., ENISA's novel cloud certification scheme

as a response to the EU Cybersecurity act) and large

industry projects (e.g., the European ecosystem

GAIA-X requires continuous monitoring of offered

services)–mostly pertaining to cloud services.

Notwithstanding CSC's bright prospect and the

growing attention of researchers, service providers,

and policymakers, it remains underexplored and has

been test-marketed and evaluated only prototypically

in research projects [4, 5]. Service providers and certi-

fication authorities still struggle with implementing

CSC due to CSC systems' high complexity and the de-

manding interplay between service providers and cer-

tification authorities [5]. In particular, service provid-

ers face the unresolved issue of providing certification

authorities with comprehensive data about service op-

erations on an ongoing basis.

Research on CSC has progressed in past years,

leading to the foundation of diverse research streams,

such as research focusing on process models (e.g., [1,

6]), architectures (e.g., [1, 4]), and techniques (e.g., [2,

3]) for achieving CSC. One promising and highly dis-

cussed CSC approach uses existing service monitoring

data to assess ongoing adherence to certification crite-

ria. By applying this monitoring-based service certifi-

cation (MSC) approach, service providers extract and

synthesize monitoring data about services that is al-

ready routinely gathered by themselves and then inter-

nally aggregate and provide certification-relevant data

to certification authorities to enable them to perform

ongoing data analyses [7]. In contrast to related CSC

approaches (i.e., test-based CSC [2, 3]), MSC en-

hances the flexibility of data gathering for providers,

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 7595
URI: https://hdl.handle.net/10125/80254
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

reduces the costs for setting up CSC, and does not re-

quire invasive service access from certification author-

ities, thereby reducing security risks.

Because MSC is promising, recent literature

started to guide how to design MSC systems that

gather, integrate, and process certification-relevant

data internally, which is then provided to and analyzed

by certification authorities (e.g., [7]). However, we

still lack implementations of MSC systems that fulfill

proposed design guidelines because implementing

MSC systems is complex and challenging. MSC sys-

tems must fulfill various requirements, such as inte-

grating data sets across diverse monitoring technolo-

gies and providing data effectively to certification au-

thorities. This lack of insights into how to implement

MSC systems hinders the application of CSC, ulti-

mately preventing providers from proving the ongoing

compliance of their services. To address this gap, we

ask: How to implement MSC systems?

To answer this research question, we apply a light-

weight design science research approach (building on

Peffers et al. [8]), derive a tentative design, develop a

system prototype, and evaluate its usefulness and ful-

fillment of prevalent MSC design guidelines in the

context of cloud services. We particularly rely on the

novel ChatOps approach concerned with integrating

development and operations tools, and processes into

a collaboration platform to enable teams to communi-

cate efficiently and manage their workflow easily [9].

The developed prototype and iterative evaluations

support our propositions that a ChatOps approach is a

suitable means in achieving CSC due to its three key

elements: a chat platform, chatbots, and third-party in-

tegrations. This study proves the technical feasibility

of an MSC system by developing and evaluating a pro-

totype based on a ChatOps approach, thereby comple-

menting monitoring-based CSC research and answer-

ing research calls (e.g., [5]). By deriving a tentative

design and describing components used in our proto-

type, we guide future (design-oriented) research and

practitioners on achieving monitoring-based CSC. Our

prototype also provides first validation regarding the

applicability and usefulness of extant guidelines on

monitoring-based CSC proposed by prior research,

which was lacking so far.

2. Theoretical background
2.1 Continuous service certification

The conventional certification of digital services is

a static attestation, primarily conducted by humans

that only retrospectively reflects the technical and or-

ganizational requirements satisfied at the time of the

assessment. For example, certification authorities per-

form on-site visits, interviews, or document analyses

to assess a service's compliance with certification cri-

teria (e.g., security and data protection regulations).

The resulting certificate traditionally has a fixed valid-

ity period (e.g., one to three years) that requires certain

stability of the certification object to assume that the

attestation results remain constant over the entire va-

lidity period. However, this is not necessarily the case

for current services, such as cloud services, due to fast

service technology lifecycles, agile development, and

continuous integration practices, threatening the relia-

bility of issued certificates.

Researchers recently started to examine how to in-

novate certification processes to enable certification

authorities to attest services continually. A resulting

promising concept is CSC, where certification-rele-

vant data about a service is consistently collected, ag-

gregated, and processed to enable certification author-

ities to validate services' compliance with certification

criteria continuously. In general, CSC builds continu-

ous monitoring and auditing and combines these ap-

proaches with additional mechanisms for the transpar-

ent provision of certification-relevant information.

To achieve CSC, researchers typically propose two

distinct CSC approaches: test-based and MSC, which

are complementary because they can be used simulta-

neously to collect diverse evidence about certification

adherence [7]. Test-based certification is characterized

by the direct, external access of the certification au-

thority to the service providers' infrastructure to check

service components and operations [2]. Test-based

CSC, therefore, follows a pull model, where the certi-

fication authority itself gathers certification-relevant

evidence. These test checks performed by the certifi-

cation authority typically involve controlling some in-

put to the service and evaluating the response [6].

However, this approach is controversial as service pro-

viders are reluctant to give the certification authority

access due to technical (e.g., requiring extensive mod-

ifications to the infrastructure), organizational (e.g.,

resistance to integrating untrustworthy techniques of

authorities), or legal reasons (e.g., data protection

laws) [1].

The second approach is called MSC and is a prom-

ising approach to overcome these drawbacks. MSC

differs because the certification authority does not

need direct access to the service provider's infrastruc-

ture. The service provider monitors its service infra-

structure, collects data, and then makes the certifica-

tion-relevant data available to the certification author-

ity [7]. MSC, therefore, follows a push model, where

service providers solely gather certification-relevant

evidence inside the trusted service operation environ-

ment and then push this evidence to the certification

authority. MSC entails greater flexibility to respond to

Page 7596

ever-changing service infrastructures because provid-

ers can independently alter their service infrastructure

while ensuring that they still transmit certification-rel-

evant data to certification authorities.

To achieve MSC, the service provider has to estab-

lish a sophisticated monitoring system that collects

and aggregates certification-relevant data scattered

across implemented monitoring software and provides

this data in a way and format that suits the certification

authority, which we refer to as the MSC system. How-

ever, service providers and certification authorities

struggle to implement a suitable MSC system due to

the high complexity and challenging interactions be-

tween both sides [5].

2.2 Related research on CSC

Reviewing the literature on CSC reveals that we

still require a deeper understanding of designing and

implementing MSC systems. Related research can be

separated based on their chosen CSC approach (test-

based vs. monitoring-based CSC) and their study fo-

cus (providing concepts and design guidelines vs. im-

plementing CSC), among others (refer to Table 1).

Based on this separation, quadrant A summarizes

most of the related work that focuses on achieving test-

based CSC by providing process models, architec-

tures, and frameworks to enable certification authori-

ties to assess services continuously (e.g., [1, 3, 6]). For

example, Anisetti et al. [3] propose a test-based secu-

rity certification process that dynamically generates

BPMN-compliant compositions of services that hold a

set of security properties.

Similar, research in quadrant B focuses on provid-

ing the foundations and design guidelines for achiev-

ing monitoring-based CSC. For example, Lins et al.

[7] derived meta-requirements and design guidelines

for MSC systems based on findings from expert inter-

views. These research efforts are augmented by indus-

try and government innovations, such as NIST's Open

Security Controls Assessment Language offering ma-

chine-readable representations of certification criteria

and metrics, among others.

Research also has started to implement and evalu-

ate test-based CSC approaches, as summarized in

quadrat C (e.g., [2, 10]). For example, test-based tech-

niques verify consumers' data integrity [10] or contin-

uous service availability [2].

Monitoring-based CSC has been less implemented

(quadrant D). An exception is the early works of Krot-

siani et al. [4], who developed a prototypical monitor-

ing-based CSC infrastructure (called "CUMULUS")

to, for instance, verify database user identification to

validate certification criteria. While providing the first

proof in concept, it remains unclear whether this pro-

totype is generalizable to other service types and

whether it fulfills recent design requirements and

guidelines proposed by research in quadrant B. To this

end, we aim to implement an MSC system to under-

stand better how to perform CSC. We ground our re-

search on the novel ChatOps approach to design and

implement a prototype.

2.3 ChatOps

ChatOps, composed of the words chat and opera-

tions, integrates operations and development tools and

processes into a collaborative communication environ-

ment like a chat tool [9]. ChatOps enables service pro-

viders' teams to use a unified interface to communicate

efficiently, view relevant information, and easily man-

age their workflow.

ChatOps belongs to the emerging practice DevOps

(development and operations) [11]. The DevOps ap-

proach is concerned with the fast and continuous de-

velopment and delivery of new quality software re-

leases and focuses on improving the collaboration be-

tween development and operations [12]. ChatOps is

thereby a practice that can help organizations blur the

lines between the roles of development and operations

personnel [13].

From a technological perspective, the ChatOps ap-

proach has three key elements [14]. First, ChatOps

embeds a chat platform that offers an instant messag-

ing system to increase collaboration among users by

providing a complete set of services for chatting and

conversation through the internet. Key features of a

chat platform relevant for ChatOps are team rooms

and message persistence.

Table 1. Related research on CSC

 CSC approaches

Test-based CSC Monitoring-based CSC

F
o

c
u
s
 o

f
s
tu

d
y

Concepts and
guidelines

A Typical research question: “How can test-
based CSC be achieved?”

Example studies: [1, 3, 6]

B

Typical research question: “How to design moni-
toring-based CSC systems?”

Example studies: [7]

Implementation

C Typical research question: “How to test secu-
rity compliance continuously?”

Example studies: [2, 10]

D

Typical research question: “How to implement
monitoring-based CSC?”

Example studies: [4], This study

Page 7597

The second key element of ChatOps is third-party

integrations to connect to other (external) services or

platforms [9, 14]. These integrations are predefined

connections into the chat platform, which extend the

users' reach and make it easy for them to interact with

other services or platforms. The interaction is com-

monly enabled through short (text) commands via di-

rect interfaces from the messaging system.

The third key element of ChatOps are chatbots

which provide customizable automation [14]. A chat-

bot is generally a running application, script, or piece

of software that automates tasks usually performed by

a human and can interact with human users on a chat

platform. In ChatOps, chatbots become necessary

when a third-party integration to the desired service is

not available or does not provide the required func-

tionalities that the team needs [9]. Compared to prom-

inent B2C chatbots, the ChatOps chatbots are used to

help teams manage their day-to-day work instead of

facilitating interaction with consumers.

The introduction of ChatOps is a journey, includ-

ing adjustments of organizational processes and im-

plementation of software systems [15]. From an or-

ganizational perspective, ChatOps adoption is charac-

terized by teams within organizations trying to move

communication from email to group chat platforms

[15]. The chat platform is used for sending messages

or sharing files like logs and configuration files within

dedicated rooms or channels. From a technical per-

spective, tools and services are connected to the chat

platform to increase automation. These tools can auto-

matically send notifications and information to the

chat platform to make users aware of certain events or

facts. Users also can query data from integrated tools

by using slash commands. Chatbots are commonly

added to the chat platform, interacting with people and

tools and automating common tasks. These chatbots

can be enhanced with artificial intelligence, which en-

ables them to, for example, recommend solutions or

channels where similar discussions took place, turning

the chat platform completely into the operating system

of teams.

Different kinds of ChatOps use cases are possible

[14]. For example, ChatOps is frequently applied to

enhance incident management by leveraging chatbots

and third-party integrations, enabling monitoring of

the services and infrastructure with notifications that

alert subject matter experts or teams in case of disrup-

tions or outages [16]. After detecting an incident, cus-

tom chatbots can start so-called war rooms within a

channel of the chat platform, invite all relevant indi-

viduals and bring incident details from other platforms

or services into the channel [14, 16]. Then, experts can

collaboratively analyze the incident and issue com-

mands to other platforms to isolate the incident and

identify an effective response.

Reflecting ChatOps' key elements, we believe it is

a valuable approach to building an MSC system pro-

totype. First, it provides means to integrate different

technologies into a chat platform, which can integrate

various certification-relevant data sources (e.g., moni-

toring tools). Second, the chat platform can be used for

the (mainly) automated data exchange between the

provider and the certification authority. Besides, Cha-

tOps fosters the communication inside the company to

gather additional certification-relevant evidence,

which cannot be collected in an automated manner and

then provide it via chat platform's data sharing capa-

bilities to other stakeholders. Finally, using chatbots

and related scripts empowers service providers and

certification authorities to define automated processes,

such as data aggregation and filtering, or initiate re-

lated workflows (e.g., automatically responding to au-

thorities' manual evidence requests, etc.). We, there-

fore, next describe our research approach to examine

whether ChatOps is suitable for performing MSC.

3. Research method

In this study, we align our prototype development

with the design science research (DSR) paradigm. In

essence, DSR involves creating new knowledge

through the design and evaluation of novel (IT) arti-

facts, along with reflection and abstraction to improve

and understand the behavior of the artifact [17]. Given

the increasing interest in DSR, there has been a con-

tinuous (and controversial) scientific discourse on

what DSR is (e.g., [17]) and is not (e.g., [18]), how to

conduct DSR studies (e.g., [8, 19]), and on recommen-

dations and criteria for rigor, utility, and aesthetic

(e.g., [20, 21, 22]), among others. This excess of ad-

vice and expectations for carrying out DSR also chal-

lenges researchers, making it difficult and costly to

carry out DSR projects and leading to less research

that applies DSR [22]. Therefore, in this study, we de-

cided to opt for a more lightweight DSR approach,

aligning with the DSR methodology proposed by

Peffers et al. [8] and thus match with the DSR genre

'DSR methodology' [22] that emphasizes the design

and construction of applicable IT artifacts.

To ease readers' understanding and conform to

prevalent DSR canons (e.g., [8, 19]), we divided our

study into five phases: (1) problem awareness: under-

standing requirements for monitoring-based CSC, (2)

suggestion: proposing a generic design fulfilling the

requirements, (3) implementation: developing a proto-

type system, (4) evaluation: demonstrating the use of

Page 7598

and evaluating the artifact, and (5) drawing conclu-

sions. Each phase tackles a critical sub-question of the

overall DSR study, and we will therefore report our

research steps taken in the following sections in more

detail. Note that we rather applied an iterative DSR ap-

proach [17]. We went back and forth between these

phases and performed ongoing evaluations of our in-

terim findings, following the design-evaluate-con-

struct-evaluate pattern [20].

We choose cloud services as an example research

context to align with prior research on CSC, which

mainly focuses on cloud services and because cloud

services are highly dynamic. Hence, cloud consumers

will greatly benefit from means enabling continuous

assurance. A prototype implementation was selected

to check whether a ChatOps approach can verify that

cloud services conform to a defined set of certification

criteria and elaborate on the ease of use, efficiency,

and implementation effort.

4. Problem awareness: Requirements for

monitoring-based CSC

We first examined the problem domain and re-

viewed extant research on CSC to understand the de-

sign problem and define objectives that our prototype

should fulfill (activity 1&2 [8]). Since service provid-

ers still struggle to implement a suitable system for

CSC due to the high complexity and demanding inter-

play with certification authorities [5], this work fo-

cused on a ChatOps-based implementation of an MSC

system as a design artifact. We, therefore, aim to de-

sign and develop an IT system that builds on the key

elements of ChatOps (i.e., chat platform, third-party

integrations, and chatbots) to gather and transmit cer-

tification-relevant data in an automated manner. In

contrast to traditional certifications' manual processes,

(semi-)automated collection, analysis and transmis-

sion of certification-relevant data enable certification

authorities to actively detect and investigate critical

defects as they occur, ultimately increasing the relia-

bility of certifications.

Literature on MSC already provides rich guide-

lines and descriptions on how to design MSC systems.

This study aligns with the meta-requirements (MRQs)

for CSC monitoring systems determined by Lins et al.

[7], clustered into five categories in line with the lay-

ered client-server architecture pattern used by tradi-

tional monitoring system architectures. MRQs specify

a class of goals that a design artifact should fulfill. We

selected a subset of MRQs, including at least one

MRQ from each category.

We align with two MRQs from the data-gathering

layer that focus on the gathering of all certification-

relevant data (i.e., refer to DGL1 [7]) by leveraging the

cloud service provider's existing monitoring technolo-

gies to enable CSC (DGL2). Further MRQs were se-

lected from the application layer and are concerned

with enabling aggregation (AL1) and filtering (AL3)

of the gathered data so that certification authorities can

focus on the necessary amount of information in a con-

solidated form. In addition, our prototype should ar-

chive both the collected and processed monitoring data

for certain periods to identify criteria deviations or

conduct trend analyses (DL1, data layer). In addition,

our MSC system should enable the continuous provi-

sion and transmission of certification-relevant infor-

mation to the certification authority (IL1, interface

layer) while ensuring data security during the ex-

change (IL2). Finally, we also adopt two non-func-

tional MRQs, requesting that MSC systems achieve a

high degree of automation (NF1) and adaptability

(NF2) to be efficient, cost-effective, and increase the

transparency of the CSC process. Taken together,

these MRQs become the objectives that we want to

achieve when designing and implementing our proto-

type. We acknowledge that the remaining MRQs pro-

posed by Lins et al. [7] are highly relevant but relate

to ensuring data protection, integrity, and auditability,

which should be addressed once the technical feasibil-

ity of using a ChatOps approach has been proven.

Next, the scope of the MSC system needs to be de-

termined. MSC generally concerns the continuous ver-

ification that cloud services comply with a set of cer-

tification criteria. Thus, an MSC system must specify

which criteria can be automatically validated by gath-

ering and providing corresponding data. Several crite-

ria catalogs can be used to certify cloud services, but

only a few consider continuous attestations. One

promising exception is the cloud security attestation

'Cloud Computing Compliance Criteria Catalogue

(C5)', which was developed by the German Federal

Office for Information Security and combined several

security standards and related criteria catalogs (e.g.,

ISO/IEC 27001). Given its international recognition

and compatibility to continuous attestations, we se-

lected a subset of criteria from the C5 attestation that

our design artifact should verify.

The selected subset is composed of four certifica-

tion criteria of the area secure service operations (cri-

teria ID OPS-02, OPS-13, OPS-17, OPS-21, refer to

the C5 criteria catalog for more details) and two certi-

fication criteria of the area security incident manage-

ment (SIM-02, SIM-03). The subset of criteria was se-

lected because these relate to logging (OPS-13), mon-

itoring (OPS-02, OPS-17), and communication with

relevant stakeholders (OPS-21, SIM-03) as core func-

tionalities which could also be used for criteria of other

areas in an adapted form, ultimately allowing us to

Page 7599

conclude the general use of ChatOps for MSC. Fur-

thermore, criteria relating to secure service operations

area were selected because ensuring service availabil-

ity is one of the most frequently required criteria in

cloud service certification (OPS-02, OPS-17). We fur-

ther added SIM-02 and SIM-03 relating to incident

management because it is one of the common use

cases for ChatOps.

5. Suggestion: Prototype architecture

In the suggestion phase (activity 3 [8]), we formu-

late a tentative design for our MSC prototype (Figure

1). On the one hand, there is the live cloud system, and

on the other hand, there is the MSC system building

on ChatOps' key elements, both operated inside the

trusted cloud infrastructure. The live cloud system in-

cludes IT resources and applications, and services of-

fered by the cloud service provider.

The MSC system should leverage monitoring soft-

ware running on the live cloud system, including IT

infrastructure monitoring systems, monitoring tools,

and plugins to gather relevant data (fulfilling (ful.)

DGL1 and DGL2). Building on ChatOps' key element

of third-party integration, available monitoring soft-

ware should be connected to the MSC system. Third-

party integration can be achieved by directly accessing

offered monitoring APIs or applying an agent-based

architecture model that comprises teams of intelligent

software agents distributed to each cloud live system

and respective monitoring software. Using such an

agent-based architecture enables efficient integration

of additional monitoring software, increasing MSC

systems' adaptability (ful. NF2). The MSC system in-

cludes a database to store the gathered data from the

cloud system, using flexible and adaptive data storage

technologies (ful. DL1 and NF2).

Furthermore, the MSC system comprises data

analysis, service-focused aggregation (e.g., aggregat-

ing data to summarize the operation of one service; ful.

AL1), filtering (ful. AL3), and visualization function-

alities (ful. IL1). On top of these data processing func-

tions, the MSC system includes an alerting function

that can automatically alert based on defined thresh-

olds when data analysis has revealed deviations from

expected behavior.

A chat platform is used as the interface for the

MSC system (ful. IL1). This chat platform includes

several chatbots that can access the MSC system's

functionalities to achieve a high degree of automation

(ful. NF1). Finally, an access control component is

built into the chat platform to control that users, who

could be the internal team, the certification authority,

or cloud service customers, can access only the rele-

vant information (ful. IL2). Data transmission should

be encrypted to increase security and prevent sensitive

data leakage (ful. IL2).

To continuously verify cloud service's adherence

to the six selected certification criteria, we designed 16

different functionalities. These functionalities include

the gathering and analyzing capacity (e.g., CPU,

RAM, disk utilization) and availability metrics of

cloud services and their underlying IT resources and

stakeholders' information about the availability and

the exceedance of certain thresholds (ful. OPS-02).

Apart from the cloud services themselves, metrics re-

lated to the individual components of the monitoring

and logging system need to be gathered, analyzed, and

alerted in case of unreachability (ful. OPS-17). In ad-

dition, logs regarding the services and their underlying

IT resources need to be gathered and analyzed to de-

termine deviations from expected behavior and inform

the relevant stakeholder about the irregular events (ful.

OPS-13). However, the stakeholder should not only be

automatically informed about incidents that affect

them but should also be kept up to date on the status

of the incident and informed about its resolution with

the actions taken (ful. OPS-21). The last derived func-

tionalities concern security as the prototype should en-

able the automatic identification and processing of se-

curity incidents (ful. SIM-02). Furthermore, the proto-

type should also allow for documentation of the pro-

cessing and resolution of security incidents with the

subsequent provision of the documented resolution to

the affected customer (ful. SIM-03).

Figure 1. Abstract architecture for an MSC system with the ChatOps approach

IT infrastructure
monitoring

system

Special purpose
monitoring tool

Applications &
Services

IT resources

Live cloud system ChatOps-based MSC system

Database

Data analysis
functionalities

Data aggregation and
filtering functionalities

Data visualization
functionalities

Alerting functionalities

Chatbots

Th
ir

d
-p

a
rt

y
in

te
g

ra
ti

o
n

s

Access
control

Internal Team

Certification
Authority

Customers

Chat platform

Page 7600

6. Implementation: Prototype develop-

ment

For developing the prototype, specific technolo-

gies for each component of the tentative design were

required (activity 3&4 [8]; refer to Figure 2). To create

a realistic scenario for the prototype, we decided to im-

plement the prototype for a simulated cloud service

provider that offers SaaS while using the infrastructure

of another cloud service provider that offers PaaS. For

the cloud service provider offering PaaS, Amazon

Web Services (AWS) was chosen because AWS is one

of the market leaders and is frequently used as under-

lying infrastructure. For the software services offered

by the simulated cloud service provider, two different

ways of deploying sample applications were used to

verify that they are compatible with the ChatOps ap-

proach. These were Docker and Kubernetes, two of the

most popular methods for deploying applications in

cloud computing.

Because the MRQs demand that existing monitor-

ing technologies are leveraged to gather relevant data

(i.e., DGL2), the selected monitoring tools for the pro-

totype should be widely adopted to enhance generali-

zability. We, therefore, selected prominent and repu-

table monitoring systems, as reported by the end-user

technology radar. We chose Prometheus as a monitor-

ing and alerting tool, Grafana as a technology for cre-

ating observability dashboards, and the Elastic Stack,

which deals with real-time analysis and visualization

of log data.

For the chat platform used as the interface of the

MSC system, Slack was chosen because it is one of the

most popular chat platforms used for ChatOps [9].

Slack offers a variety of third-party integrations and

hosted chatbots. For the prototypical implementation,

the chatbots Hubot and BotKube were used. Hubot is

currently one of the most well-known chatbots with

the most extensive list of scripts for managing services

and infrastructure [9]. The BotKube chatbot enables

interaction with a Kubernetes cluster. These two chat-

bots were integrated by obtaining an access token

based on the OAuth 2.0 authorization flow offered by

Slack. Furthermore, the prototypical implementation

relies on Slack’s feature of protected data transmis-

sions with the TLS 1.2 encryption protocol to ensure

data security during the exchange.

The development of the prototype started with the

setup of the IT resources within the AWS cloud com-

puting platform. Therefore, three EC2 instances were

launched. One of these instances was hosting a sample

docker application and exposing it as a cloud service.

The second instance was used to install the necessary

monitoring tools (e.g., Prometheus, Grafana, Alert-

manager, Blackbox exporter) and the Hubot chatbot.

On the third instance, another Prometheus and Alert-

manager instance was installed to observe the server

with all monitoring tools to detect its unavailability.

Apart from AWS resources, a Minikube Kubernetes

cluster was installed on a local machine to vary the

hardware. The Minikube Kubernetes cluster was used

to set up a sample Kubernetes application, BotKube,

the Elastic-stack, and the Falco-exporter required to

identify security incidents in the cluster. The Prome-

theus node exporter was installed on all EC2 instances

and the local machine to gather availability and capac-

ity metrics (e.g., CPU, RAM, disk utilization).

Next, we set up Slack and configured five different

channels based on the different topics handled by the

objectives of the prototype. These topics included gen-

eral alerts (e.g., availability and capacity alerts), log

alerts, and security incidents for the internal team. Fur-

thermore, channels for the certification authority and

the customer were created to provide information to

them. Slack's access control and access policy features

provided all relevant stakeholders access to their re-

quired channels. Besides the used simple username

and password authentication, Slack offers the setup of

SAML SSO with providers like OneLogin or Okta,

After the initial installation and setup of the indi-

vidual components, several components required fur-

ther configuration to enable communication with other

components and enable the desired functionalities.

One of these components included Prometheus, which

required the definition of both the objects that should

be monitored and the alert rules, which specified sce-

narios with unexpected behavior that would require at-

tention and an alert. The objects that should be moni-

tored were specified by their respective URL and in-

cluded all monitoring system components and the two

example cloud services. Because the implemented

cloud services do not expose Prometheus metrics, the

Figure 2. Prototype overview

Page 7601

Blackbox exporter performed HTTP requests to check

their availability. The defined alert rules are concerned

with the capacity metrics, such as CPU, RAM, disk

utilization, and the availability of the cloud services,

their underlying infrastructure, and the components of

the monitoring and logging system. For each alert rule,

an expression was defined in PromQL syntax that

specifies the condition to be fulfilled for a certain pe-

riod to send an alert. Within the alert rule, a destination

was specified to send alerts to different channels

within Slack. The actual mapping of a destination

name to a specific Slack channel is done by the Alert-

manager, responsible for communicating the provi-

sioned activated alert from Prometheus to Slack.

In addition, the ELK stack had to be configured, as

the paths of the necessary log files to be collected had

to be provided, and alert rules were created within

Kibana to detect deviations in the logs. Furthermore,

the previously prepared Slack channel regarding the

logs was created as a connector in Kibana by providing

its API URL to send the alerts to Slack.

The last two components that required further con-

figuration were the BotKube and Hubot chatbots. Both

of them were connected to Slack by providing a gen-

erated Slack API token to their configuration file.

Once a connection was established, creating the actual

automation scripts for specific tasks related to the ob-

jectives of the prototypical implementation began.

Overall, three different automation scripts were cre-

ated. These included providing information about the

availability of the cloud services automatically and on

manual requests and a script that helped the internal

team inform and update the certification authority and

the customers about security incidents.

7. Evaluation: Prototype assessments

Following an iterative design science approach and

the design-evaluate-construct-evaluate pattern [20],

we continuously evaluated the results of each phase

(activity 5 [8]). For instance, we elaborated on whether

our tentative design developed in the suggestion phase

fulfills the MRQs; and we critically evaluated whether

our prototype implementation aligns with the tentative

design. Finally, we performed comprehensive func-

tional and non-functional evaluations to analyze the

technical feasibility of our MSC system and the suita-

bility and usefulness of using a ChatOps approach.

Eight test cases were created for the functional

evaluation to cover all the required functionalities de-

rived from the objectives. One test case, for example,

dealt with the shutdown of the sample application to

simulate the unavailability of the cloud service. As a

result, three alerts were automatically generated. The

first one informed the internal team regarding the un-

availability of the sample application (Figure 3). The

other two alerts informed the certification authority

and the customer after 15 minutes of continuous una-

vailability as it could, for example, be demanded in an

SLA between the cloud service provider and the cloud

service customer.

Figure 3. Unavailability alert

Another test case checked whether the certification

authority is automatically informed about the availa-

bility of the cloud service every 24 hours. The result

of the check was that every 24 hours, the certification

authority was provided with a percentage of the aver-

age availability of the cloud service and the corre-

sponding Grafana graph in a PDF file and the raw data

in a JSON file. The certification authority can use this

data for internal, automated analyses regarding certifi-

cation compliance.

Overall, all eight test cases for the functional eval-

uation validated the expected behavior and can thus be

considered successful. Hence, our prototype generally

enables the verification of the selected certification

criteria in an automated manner and provides the cer-

tification authority with transparent information.

Next, we assessed the prototype based on non-

functional requirements as well. First, the prototype's

ease of use was analyzed by discussing how end-users

interact with the prototype. We perceived a high level

of user-friendliness because users can directly interact

with the chat platform Slack to interact with the chat-

bots, send commands or get in touch with other stake-

holders. Chat platforms like Slack are now well-estab-

lished and used by many people, which means that

end-users do not have to get used to a new interface.

Furthermore, end users can interact with the prototype

in natural language by integrating the chatbot Hubot,

which listens to requests to perform (complex) tasks.

Another criterion for evaluation is efficiency, re-

lating to how efficiently the developed prototype sup-

ports the verification of the conformity of cloud ser-

vices with a set of certification criteria. The prototype

(semi-) automates various tasks needed for CSC. On

the one hand, there are automatic gathering and analy-

sis processes concerning certification-relevant infor-

mation from the cloud services and their underlying IT

Page 7602

resources. Through the subsequent automated alerting

and information provisioning, relevant stakeholders

are informed about the incident or unexpected behav-

ior without human intervention. On the other hand,

there is still manual processing of incidents required.

Nevertheless, these analyses are supported by auto-

matic mechanisms, such as requesting additional anal-

yses via chatbots on demand. Given the high degree of

automation, service providers and certification author-

ities can save time and effort, so we conclude that the

efficiency can be rated as high.

Finally, we assessed the effort required by cloud

service providers and certification authorities to im-

plement the ChatOps approach for performing MSC.

The effort for the cloud service provider depends

heavily on the extent to which it can already meet the

certification criteria because it has already collected

the certification-relevant information in the course of

operating the cloud service. Furthermore, it must be

considered whether the cloud service provider is fa-

miliar with the fundamental ChatOps approach. Gen-

erally, implementing the ChatOps approach for per-

forming monitoring-based CSC represents a high ini-

tial effort for the cloud service provider, especially if

the provider is new to ChatOps and has not yet col-

lected much of the data relevant to certification. This

is because the cloud service provider has to find and

set up an appropriate tool or method for gathering cer-

tification-relevant data for each certification criterion,

create alert rules to detect irregular events, and write

scripts for the tasks that the chatbots will automate in

operation. After the initial setup, however, the effort is

minimized by the high degree of automation and

adaptability as new exporters can be easily integrated

into the solution. For the certification authority, the ef-

fort relates mainly to specify in which form and fre-

quency the evidence for the criteria is required. After-

ward, a certification authority can perform automated

data analyses to attest the certification adherence.

8. Conclusion

Principal Findings. This study designed and de-

veloped a ChatOps-based prototype to clarify how to

perform monitoring-based CSC since cloud service

providers and certification authorities still struggle to

transfer novel knowledge on CSC into practice.

Our iterative evaluations support our propositions

that a ChatOps approach is a suitable means in achiev-

ing CSC. Our tentative design and the resulting proto-

type incorporate the three key elements of ChatOps to

achieve our design goals and several advantages for

service providers and authorities. Our prototype shows

that a chat platform eases and automates the collabo-

ration and communication between service providers

and certification authorities by not only providing cer-

tification-relevant information in an automated fash-

ion but also enable direct communication between em-

ployees. For example, a service administrator may di-

rectly comment and explain why certain criteria devi-

ation appeared, for instance, due to service mainte-

nance or false positives. Such direct feedback is highly

valuable for certification authorities because they per-

form further (spot check) analyses on non-conformi-

ties to understand the reasons and rationales before de-

ciding regarding certification suspension.

Implementing chatbots not only enables the auto-

mation of MSC functionalities, such as automated data

gathering and aggregation but also provides certifica-

tion authorities means to perform on-demand auditing.

A ChatOps-based MSC system also enables certifica-

tion authorities to develop their own chatbots that au-

tomatically analyze provided data. Certification au-

thorities then do not have to set up their own CSC in-

frastructure but rely on the providers' chat platform.

Despite all the benefits ChatOps entails, there are

a few things to consider to exploit ChatOps' potential

fully, such as the signal-to-noise ratio, which is con-

cerned about the ratio between meaningful insights

and the potential overload of conversations and alerts,

referred to as noise [9]. When the chat platform is con-

stantly updated with new information that needs to be

absorbed and processed, it can become hard to follow

conversations and maintain awareness of what is going

on, consequently doing more harm than being good to

productivity. To find the right signal-to-noise ratio and

avoid alert fatigue, the alert settings should constantly

be adjusted such that all alerts are actionable and re-

dundant alerts are reduced. A ChatOps-based ap-

proach also requires high efforts for initial setup. A

novel MSC system has to be configured individually

since each service infrastructure has its unique compo-

sition. Thus, in contrast to test-based CSC approaches

that provide higher generalizability and reusability,

deploying the same MSC system to novel services

might be limited.

Implications for Research and Practice. Our

study contributes to extant research on CSC and prac-

tice. First, we prove the technical feasibility of an

MSC system by developing and evaluating a proto-

type, thereby complementing monitoring-based CSC

research and answering research calls (e.g., [5]). More

importantly, we clarify how to perform and implement

monitoring-based CSC by building on the novel Cha-

tOps approach. Our tentative design, prototype, and

evaluation illustrate that ChatOps' key elements are

suitable and useful means to support the process of

CSC, such as automated data gathering and transpar-

ent information provisioning to certification authori-

ties. With our tentative design, in particular, we guide

Page 7603

future (design-oriented) research on monitoring-based

CSC. Our prototype also provides first validation re-

garding the applicability and usefulness of extant

guidelines on monitoring-based CSC proposed by

prior research, which was lacking so far.

For practitioners, this study's findings guide the

implementation of MSC systems. Cloud service pro-

viders that already implemented the ChatOps ap-

proach may take our design and implementation rec-

ommendations to experiment with CSC. We also in-

form industry and policymakers currently demanding

continuous monitoring and certification but lack the

means to do so. For example, ENISA currently devel-

ops a candidate cybersecurity certification scheme for

cloud services, requiring continuous monitoring of

cloud services exposed to high risks. However, how to

perform such monitoring is still an open issue and, in-

deed, a highly discussed topic in the (cloud) cyberse-

curity community.

Limitations and Future Research. Our study is

not without limitations. First, we developed and eval-

uated a prototype in a test environment only by simu-

lating two different cloud service applications running

on different (virtualized) hardware. Future research

may implement and evaluate an MSC system in real-

world settings to better understand practical applica-

bility and potential unintended side effects for the

cloud service infrastructure. Second, we refrained

from tackling MRQs regarding data security, integrity,

and auditability for the first prototype version [7].

Thus, our prototype may be subject to security risks

and, particularly, the risks of malicious providers eu-

phemizing monitoring data (e.g., automatically delet-

ing non-compliant data and reporting compliance

only), and data communication vulnerabilities (refer to

[1] and [7] for detailed security discussions). Third, all

evaluations were solely performed by the researcher

team and not with actual users of MSC systems. Future

research should evaluate and discuss the prototype

with cloud service and certification authority experts

to identify integration and operation problems and po-

tential boundary conditions of ChatOps-based MSC

systems. Finally, we selected and tested only a small

set of security-related certification criteria on an ongo-

ing basis. Future research may analyze which certifi-

cation criteria can be automatically validated using a

monitoring-based CSC approach and whether combin-

ing it with a test-based CSC approach achieves greater

coverage of suitable criteria.

9. References

[1] Lins, S., S. Schneider, and A. Sunyaev, “Trust is Good,

Control is Better”, IEEE Trans on Cloud Computing

6(3), 2018, pp. 890–903.

[2] Stephanow, P., and C. Banse, “Evaluating the Perfor-

mance of Continuous Test-Based Cloud Service Certi-

fication”, Proc. of the 17th CCGRID, (2017), 1117–

1126.

[3] Anisetti, M., C. Ardagna, E. Damiani, and G. Polegri,

“Test-Based Security Certification of Composite Ser-

vices”, ACM Trans on the Web 13(1), 2019, pp. 1–43.

[4] Krotsiani, M., G. Spanoudakis, and C. Kloukinas, “Mon-

itoring-Based Certification of Cloud Service Security”,

Proc. of the OTM 2015 Conferences, (2015), 644–659.

[5] Teigeler, H., S. Lins, and A. Sunyaev, “Drivers vs. In-

hibitors”, Proc. of the 51 HICSS, (2018), 5676–5685.

[6] Kunz, I., and P. Stephanow, “A Process Model to Sup-

port Continuous Certification of Cloud Services”, Proc.

of the 31st AINA, IEEE (2017), 986–993.

[7] Lins, S., S. Schneider, J. Szefer, S. Ibraheem, and A.

Sunyaev, “Designing Monitoring Systems for Continu-

ous Certification of Cloud Services”, CAIS 44, 2019,

pp. 460–510.

[8] Peffers, K., T. Tuunanen, M.A. Rothenberger, and S.

Chatterjee, “A Design Science Research Methodology

for Information Systems Research”, JMIS 24(3), 2007,

pp. 45–77.

[9] Hand, J., ChatOps: Managing operations from Group

Chat, O’Reilly Media, Sebastopol, CA, 2016.

[11] Wang, B., B. Li, and H. Li, “Oruta”, IEEE Trans on

Cloud Computing 2(1), 2014, pp. 43–56.

[11] Ebert, C., G. Gallardo, J. Hernantes, and N. Serrano,

“DevOps”, IEEE Software 33(3), 2016, pp. 94–100.

[13] Wettinger, J., V. Andrikopoulos, and F. Leymann, “En-

abling DevOps Collaboration and Continuous Delivery

Using Diverse Application Environments”, Proc. of the

OTM 2015 Conferences, 2015, 348–358.

[14] Calefato, F., and F. Lanubile, “A Hub-and-Spoke

Model for Tool Integration in Distributed Develop-

ment”, Proc. of the 11th ICGSE, 2016, 129–133.

[15] Lane, R., and W. McKeon-White, Harness ChatOps To

Empower Remote Collaboration, Forrester Research,

Cambridge, USA, 2020.

[15] Regan, S., “What is ChatOps? A guide to its evolution

and adoption”, Work Life by Atlassian, 2016.

[16] IBM, IBM Cloud Service Management & Operations

Field Guide, Armonk, NY, USA, 2018.

[17] Hevner, A.R., S.T. March, J. Park, and S. Ram, “Design

Science in Information Systems Research”, MIS Quar-

terly 28(1), 2004, pp. 75–105.

[19] Baskerville, R., “What design science is not”, EJIS

17(5), 2008, pp. 441–443.

[20] Vaishnavi, V., and W. Kuechler, Design science re-

search methods and patterns, CRC Press, Taylor &

Francis Group, Boca Raton, 2015.

[21] Sonnenberg, C., and J. vom Brocke, “Evaluations in the

Science of the Artificial”, In K. Peffers, M. Rothen-

berger and B. Kuechler, eds., Design Science Research

in Information Systems. Springer, 2012, 381–397.

[22] Baskerville, R.L., M. Kaul, and V.C. Storey, “Aesthet-

ics in design science research”, EJIS 27(2), 2018, pp.

140–153.

[23] Peffers, K., T. Tuunanen, and B. Niehaves, “Design sci-

ence research genres”, EJIS 27(2), 2018, pp. 129–139.

Page 7604

