71 research outputs found
Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis
Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk
Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis
Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe
Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis
Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD
Review of the projected impacts of climate change on coastal fishes in southern Africa
The coastal zone represents one of the most economically and ecologically important ecosystems on the planet, none more so than in southern Africa. This manuscript examines the potential impacts of climate change on the coastal fishes in southern Africa and provides some of the first information for the Southern Hemisphere, outside of Australasia. It begins by describing the coastal zone in terms of its physical characteristics, climate, fish biodiversity and fisheries. The region is divided into seven biogeographical zones based on previous descriptions and interpretations by the authors. A global review of the impacts of climate change on coastal zones is then applied to make qualitative predictions on the likely impacts of climate change on migratory, resident, estuarine-dependent and catadromous fishes in each of these biogeographical zones. In many respects the southern African region represents a microcosm of climate change variability and of coastal habitats. Based on the broad range of climate change impacts and life history styles of coastal fishes, the predicted impacts on fishes will be diverse. If anything, this review reveals our lack of fundamental knowledge in this field, in particular in southern Africa. Several research priorities, including the need for process-based fundamental research programs are highlighted
Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis
Funding Information: GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file : Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services. Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe
Performance of risk assessment models for prevalent or undiagnosed type 2 diabetes mellitus in a multi-ethnic population-the helius study
Background: Most risk assessment models for type 2 diabetes (T2DM) have been developed in Caucasians and Asians; little is known about their performance in other ethnic groups. Objective(s): We aimed to identify existing models for the risk of prevalent or undiagnosed T2DM and externally validate them in a multi-ethnic population currently living in the Netherlands. Methods: A literature search to identify risk assessment models for prevalent or undiagnosed T2DM was performed in PubMed until December 2017. We validated these models in 4,547 Dutch, 3,035 South Asian Surinamese, 4,119 African Surinamese, 2,326 Ghanaian, 3,598 Turkish, and 3,894 Moroccan origin participants from the HELIUS (Healthy LIfe in an Urban Setting) cohort study performed in Amsterdam. Model performance was assessed in terms of discrimination (C-statistic) and calibration (Hosmer-Lemeshow test). We identified 25 studies containing 29 models for prevalent or undiagnosed T2DM. C-statistics varied between 0.77-0.92 in Dutch, 0.66-0.83 in South Asian Surinamese, 0.70-0.82 in African Surinamese, 0.61-0.81 in Ghanaian, 0.69-0.86 in Turkish, and 0.69-0.87 in the Moroccan populations. The C-statistics were generally lower among the South Asian Surinamese, African Surinamese, and Ghanaian populations and highest among the Dutch. Calibration was poor (Hosmer-Lemeshow p < 0.05) for all models except one. Conclusions: Generally, risk models for prevalent or undiagnosed T2DM show moderate to good discriminatory ability in different ethnic populations living in the Netherlands, but poor calibration. Therefore, these models should be recalibrated before use in clinical practice and should be adapted to the situation of the population they are intended to be used in
Performance of risk assessment models for prevalent or undiagnosed type 2 diabetes mellitus in a multi-ethnic population-the helius study
Background: Most risk assessment models for type 2 diabetes (T2DM) have been developed in Caucasians and Asians; little is known about their performance in other ethnic groups. Objective(s): We aimed to identify existing models for the risk of prevalent or undiagnosed T2DM and externally validate them in a multi-ethnic population currently living in the Netherlands. Methods: A literature search to identify risk assessment models for prevalent or undiagnosed T2DM was performed in PubMed until December 2017. We validated these models in 4,547 Dutch, 3,035 South Asian Surinamese, 4,119 African Surinamese, 2,326 Ghanaian, 3,598 Turkish, and 3,894 Moroccan origin participants from the HELIUS (Healthy LIfe in an Urban Setting) cohort study performed in Amsterdam. Model performance was assessed in terms of discrimination (C-statistic) and calibration (Hosmer-Lemeshow test). We identified 25 studies containing 29 models for prevalent or undiagnosed T2DM. C-statistics varied between 0.77-0.92 in Dutch, 0.66-0.83 in South Asian Surinamese, 0.70-0.82 in African Surinamese, 0.61-0.81 in Ghanaian, 0.69-0.86 in Turkish, and 0.69-0.87 in the Moroccan populations. The C-statistics were generally lower among the South Asian Surinamese, African Surinamese, and Ghanaian populations and highest among the Dutch. Calibration was poor (Hosmer-Lemeshow p < 0.05) for all models except one. Conclusions: Generally, risk models for prevalent or undiagnosed T2DM show moderate to good discriminatory ability in different ethnic populations living in the Netherlands, but poor calibration. Therefore, these models should be recalibrated before use in clinical practice and should be adapted to the situation of the population they are intended to be used in
Contribution of climate change to degradation and loss of critical fish habitats in Australian marine and freshwater environments
Australia's aquatic ecosystems are unique, supporting a high diversity of species and high levels of endemism; however, they are also extremely vulnerable to climate change. The present review assesses climate-induced changes to structural habitats that have occurred in different aquatic ecosystems. Climatic impacts are often difficult to discern against the background of habitat degradation caused by more direct anthropogenic impacts. However, climate impacts will become more pronounced with ongoing changes in temperature, water chemistry, sea level, rainfall patterns and ocean currents. Each of these factors is likely to have specific effects on ecosystems, communities or species, and their relative importance varies across different marine and freshwater habitats. In the Murray–Darling Basin, the greatest concern relates to declines in surface water availability and riverine flow, owing to declining rainfall and increased evaporative loss. On the Great Barrier Reef, increasing temperatures and ocean acidification contribute to sustained and ongoing loss of habitat-forming corals. Despite the marked differences in major drivers and consequences of climate change, the solution is always the same. Greenhouse-gas emissions need to be reduced as a matter of urgency, while also minimising non-climatic disturbances. Together, these actions will maximise opportunities for adaptation by species and increase ecosystem resilience
Baselines and degradation of coral reefs in the northern Line Islands
Effective conservation requires rigorous baselines of pristine conditions to assess the impacts of human activities and to evaluate the efficacy of management. Most coral reefs are moderately to severely degraded by local human activities such as fishing and pollution as well as global change, hence it is difficult to separate local from global effects. To this end, we surveyed coral reefs on uninhabited atolls in the northern Line Islands to provide a baseline of reef community structure, and on increasingly populated atolls to document changes associated with human activities. We found that top predators and reef-building organisms dominated unpopulated Kingman and Palmyra, while small planktivorous fishes and fleshy algae dominated the populated atolls of Tabuaeran and Kiritimati. Sharks and other top predators overwhelmed the fish assemblages on Kingman and Palmyra so that the biomass pyramid was inverted (top-heavy). In contrast, the biomass pyramid at Tabuaeran and Kiritimati exhibited the typical bottom-heavy pattern. Reefs without people exhibited less coral disease and greater coral recruitment relative to more inhabited reefs. Thus, protection from overfishing and pollution appears to increase the resilience of reef ecosystems to the effects of global warming
- …