197 research outputs found

    The stellar host in blue compact dwarf galaxies: the need for a two-dimensional fit

    Get PDF
    The structural properties of the low surface brightness stellar host in blue compact dwarf galaxies are often studied by fitting r^{1/n} models to the outer regions of their radial profiles. The limitations imposed by the presence of a large starburst emission overlapping the underlying component makes this kind of analysis a difficult task. We propose a two-dimensional fitting methodology in order to improve the extraction of the structural parameters of the LSB host. We discuss its advantages and weaknesses by using a set of simulated galaxies and compare the results for a sample of eight objects with those already obtained using a one-dimensional technique. We fit a PSF convolved Sersic model to synthetic galaxies, and to real galaxy images in the B, V, R filters. We restrict the fit to the stellar host by masking out the starburst region and take special care to minimize the sky-subtraction uncertainties. In order to test the robustness and flexibility of the method, we carry out a set of fits with synthetic galaxies. Furthermore consistency checks are performed to assess the reliability and accuracy of the derived structural parameters. The more accurate isolation of the starburst emission is the most important advantage and strength of the method. Thus, we fit the host galaxy in a range of surface brightness and in a portion of area larger than in previous published 1D fits with the same dataset. We obtain robust fits for all the sample galaxies, all of which, except one, show Sersic indices n very close to 1, with good agreement in the three bands. These findings suggest that the stellar hosts in BCDs have near-exponential profiles, a result that will help us to understand the mechanisms that form and shape BCD galaxies, and how they relate to the other dwarf galaxy classes.Comment: 22 pages, 15 figures (low resolution), accepted for publication in A&A. A higher resolution version of the figures can be provided upon reques

    The star formation history of mass-selected galaxies in the COSMOS field

    Get PDF
    We explore the evolution of the specific star formation rate (SSFR) for 3.6um-selected galaxies of different M_* in the COSMOS field. The average SFR for sub-sets of these galaxies is estimated with stacked 1.4GHz radio continuum emission. We separately consider the total sample and a subset of galaxies (SF) that shows evidence for substantive recent star formation in the rest-frame optical SED. At 0.2<z<3 both populations show a strong and M_*-independent decrease in their SSFR towards z=0.2, best described by a power- law (1+z)^n, where n~4.3 for all galaxies and n~3.5 for SF sources. The decrease appears to have started at z>2, at least above 4x10^10M_Sun where our conclusions are most robust. We find a tight correlation with power-law dependence, SSFR (M_*)^beta, between SSFR and M_* at all z. It tends to flatten below ~10^10M_Sun if quiescent galaxies are included; if they are excluded a shallow index beta_SFG -0.4 fits the correlation. On average, higher M_* objects always have lower SSFRs, also among SF galaxies. At z>1.5 there is tentative evidence for an upper SSFR-limit that an average galaxy cannot exceed. It is suggested by a flattening of the SSFR-M_* relation (also for SF sources), but affects massive (>10^10M_Sun) galaxies only at the highest z. Below z=1.5 there thus is no direct evidence that galaxies of higher M_* experience a more rapid waning of their SSFR than lower M_* SF systems. In this sense, the data rule out any strong 'downsizing'. We combine our results with recent measurements of the galaxy (stellar) mass function in order to determine the characteristic mass of a SF galaxy (M_*=10^(10.6\pm0.4)M_Sun). In this sense, too, there is no 'downsizing'. Our analysis constitutes the most extensive SFR density determination with a single technique to z=3. Recent Herschel results are consistent with our results, but rely on far smaller samples.Comment: 37 pages, 14 figures, 7 tables; accepted for publication in the Astrophysical Journal; High resolution versions of all figures available at www.mpia-hd.mpg.de/homes/karim/research.htm

    Stellar Mass and Velocity Functions of Galaxies: Backward evolution and the fate of Milky Way siblings

    Full text link
    We attempt in this paper to check the consistency of the observed Stellar Mass Function (SMF), SFR functions and the cosmic star formation rate density with simple backward evolutionary models. Starting from observed SMF for star-forming galaxies, we use backwards models to predict the evolution of a number of quantities, such as the SFR function, the cosmic SFR density and the Velocity Function. The velocity being a parameter attached to a galaxy during its history (contrary to the stellar mass), this approach allows us to quantify the number density evolution of galaxies of a given velocity, e.g. of the Milky Way siblings. Observations suggest that the SMF of star forming galaxies is constant between redshift 0 and 1. In order to reproduce this result, we must quench star formation in a number of star forming galaxies. The SMF of these quenched galaxies is consistent with available data concerning the increase in the population of quiescent galaxies in the same redshift interval. The SMF of quiescent galaxies is then mainly determined by the distribution of active galaxies that must stop star formation, with a modest mass redistribution during mergers. The cosmic SFR density, and the evolution of the SFR functions are relatively well recovered, although they provide some clue for a small evolution of the SMF of star forming galaxies at the lowest redshifts. We thus consider that we have obtained in a simple way a relatively consistent picture of the evolution of galaxies at intermediate redshifts. We note that if this picture is correct, 50 percent of the Milky-Way sisters (galaxies with the same velocity as our Galaxy, i.e. 220 km/s) have quenched their star formation since redshift 1 (and an even larger fraction for larger velocities). We discuss the processes that might be responsible for this transformation.Comment: 12 pages, 14 figures, accepted in Astronomy and Astrophysic

    AEGIS: The Diversity of Bright Near-IR Selected Distant Red Galaxies

    Get PDF
    We use deep and wide near infrared (NIR) imaging from the Palomar telescope combined with DEEP2 spectroscopy and Hubble Space Telescope (HST) and Chandra Space Telescope imaging to investigate the nature of galaxies that are red in NIR colors. We locate these `distant red galaxies' (DRGs) through the color cut (J-K)_{vega} > 2.3 over 0.7 deg^{2}, where we find 1010 DRG candidates down to K_s = 20.5. We combine 95 high quality spectroscopic redshifts with photometric redshifts from BRIJK photometry to determine the redshift and stellar mass distributions for these systems, and morphological/structural and X-ray properties for 107 DRGs in the Extended Groth Strip. We find that many bright (J-K)_{vega}>2.3 galaxies with K_s2 systems massive with M_*>10^{11} M_solar. HST imaging shows that the structural properties and morphologies of DRGs are also diverse, with the majority elliptical/compact (57%), and the remainder edge-on spirals (7%), and peculiar galaxies (29%). The DRGs at z < 1.4 with high quality spectroscopic redshifts are generally compact, with small half light radii, and span a range in rest-frame optical properties. The spectral energy distributions for these objects differ from higher redshift DRGs: they are bluer by one magnitude in observed (I-J) color. A pure IR color selection of high redshift populations is not sufficient to identify unique populations, and other colors, or spectroscopic redshifts are needed to produce homogeneous samples

    Neutral Hydrogen and Star Formation in the Irregular Galaxy NGC 2366

    Get PDF
    We present UBVJHKHalpha and HI data of the irregular galaxy NGC 2366. It is a normal boxy-shaped disk seen at high inclination angle. We do not see any unambiguous observational signature of a bar. There is an asymmetrical extension of stars along one end of the major axis of the galaxy, and this is where the furthest star-forming regions are found, at 1.3R_Holmberg. The HI is normal in many respects but shows some anomalies: 1) The integrated HI shows two ridges running parallel to the major axis that deproject to a large ring. 2) The velocity field exhibits several large-scale anomalies superposed on a rotating disk. 3) The inclination and position angles derived from the kinematics differ from those dervied from the optical and HI mor- phology. 4) There are regions in the HI of unusually high velocity dispersion that correlate with deficits of HI emission in a manner suggestive of long-range, turbulent pressure equilibrium. Star-forming regions are found where the gas densities locally exceed 6 Msolar/pc^2. NGC 2366, like other irregulars, has low gas densities relative to the critical gas densities of gravitational instability models. Because of the lack of shear in the optical galaxy, there is little competition to the slow gravitational contraction that follows energy dissipation. However, the peak gas densities in the star-forming regions are equal to the local tidal densities for gravitational self-binding of a rotating cloud. Evidently the large scale gas concentrations are marginally bound against background galactic tidal forces. This condition for self-binding may be more fundamental than the instability condition because it is local, three-dimensional, and does not involve spiral arm generation as an intermediate step toward star formation.Comment: To be published in ApJ; better figures available ftp.lowell.edu, cd pub/dah/n2366pape

    The COSMOS-WIRCam near-infrared imaging survey: I: BzK selected passive and star forming galaxy candidates at z>1.4

    Get PDF
    (abridged) We present a new near-infrared survey covering the 2 deg sq COSMOS field. Combining our survey with Subaru B and z images we construct a deep, wide-field optical-infrared catalogue. At Ks<23 (AB magnitudes) our survey completeness is greater than 90% and 70% for stars and galaxies respectively and contains 143,466 galaxies and 13,254 stars. At z~2 our catalogues contain 3931 quiescent and 25,757 star-forming BzK-selected galaxies representing the largest and most secure sample of these objects to date. Our counts of quiescent galaxies turns over at Ks~22 an effect which we demonstrate cannot be due to sample incompleteness. In our survey both the number of faint and bright quiescent objects exceeds the predictions of a semi-analytic galaxy formation model, indicating potentially the need for further refinements in the amount of merging and AGN feedback at z~2 in these models. We measure the angular correlation function for each sample and find that at small scales the correlation function for passive BzK galaxies exceeds the clustering of dark matter. We use 30-band photometric redshifts to derive the spatial correlation length and the redshift distributions for each object class. At Ks<22 we find r_0^{\gamma/1.8}=7.0 +/-0.5h^{-1} Mpc for the passive BzK candidates and 4.7+/-0.8h^{-1} Mpc for the star-forming BzK galaxies. Our pBzK galaxies have an average photometric redshift of z_p~1.4, in approximate agreement with the limited spectroscopic information currently available. The stacked Ks image will be made publicly available from IRSA.Comment: Accepted for publication in Astrophysical Journal. 17 pages, 17 figures, minor revisions to match published version available at http://adsabs.harvard.edu/abs/2010ApJ...708..202

    Integral field spectroscopy with SINFONI of VVDS galaxies. I. Galaxy dynamics and mass assembly at 1.2 < z < 1.6

    Full text link
    Context. Identifying the main processes of galaxy assembly at high redshifts is still a major issue to understand galaxy formation and evolution at early epochs in the history of the Universe. Aims. This work aims to provide a first insight into the dynamics and mass assembly of galaxies at redshifts 1.2<z<1.6, the early epoch just before the sharp decrease of the cosmic star formation rate. Methods. We use the near-infrared integral field spectrograph SINFONI on the ESO-VLT under 0.65 seeing to obtain spatially resolved spectroscopy on nine emission line galaxies with 1.2<z<1.6 from the VIMOS VLT Deep Survey. We derive the velocity fields and velocity dispersions on kpc scales using the Halpha emission line. Results. Out of the nine star-forming galaxies, we find that galaxies distribute in three groups: two galaxies can be well reproduced by a rotating disk, three systems can be classified as major mergers and four galaxies show disturbed dynamics and high velocity dispersion. We argue that there is evidence for hierarchical mass assembly from major merger, with most massive galaxies with M>10^11Msun subject to at least one major merger over a 3 Gyr period as well as for continuous accretion feeding strong star formation. Conclusions. These results point towards a galaxy formation and assembly scenario which involves several processes, possibly acting in parallel, with major mergers and continuous gas accretion playing a major role. Well controlled samples representative of the bulk of the galaxy population at this key cosmic time are necessary to make further progress.Comment: 23 pages, 22 figures, accepted for publication in A&

    Mapping Luminous Blue Compact Galaxies with VIRUS-P: morphology, line ratios and kinematics

    Full text link
    [abridged] We carry out an integral field spectroscopy (IFS) study of a sample of luminous BCGs, with the aim to probe the morphology, kinematics, dust extinction and excitation mechanisms of their warm interstellar medium (ISM). IFS data for five luminous BCGs were obtained using VIRUS-P, the prototype instrument for the Visible Integral Field Replicable Unit Spectrograph, attached to the 2.7m Harlan J. Smith Telescope at the McDonald Observatory. VIRUS-P consists of a square array of 247 optical fibers, which covers a 109"x109" field of view, with a spatial sampling of 4.2" and a 0.3 filling factor. We observed in the 3550-5850 Angstrom spectral range, with a resolution of 5 A FWHM. From these data we built two-dimensional maps of the continuum and the most prominent emission-lines ([OII]3727, Hgamma, Hbeta and [OIII]5007), and investigate the morphology of diagnostic emission-line ratios and the extinction patterns in the ISM as well as stellar and gas kinematics. Additionally, from integrated spectra we infer total line fluxes and luminosity-weighted extinction coefficients and gas-phase metallicities. All galaxies exhibit an overall regular morphology in the stellar continuum, while their warm ISM morphology is more complex: in II Zw 33 and Mrk 314, the star-forming regions are aligned along a chain-structure; Haro 1, NGC 4670 and III Zw 102 display several salient features, such as extended gaseous filaments and bubbles. A significant intrinsic absorption by dust is present in all galaxies, the most extreme case being III Zw 102. Our data reveal a manifold of kinematical patterns, from overall regular gas and stellar rotation to complex velocity fields produced by structurally and kinematically distinct components.Comment: Accepted for publication in A&A. 16 pages, 10 figure

    Study of star-forming galaxies in SDSS up to redshift 0.4 II. Evolution from the fundamental parameters: mass, metallicity & SFR

    Full text link
    To understand the formation and evolution of galaxies, it is important to have a full comprehension of the role played by the metallicity, star formation rate (SFR), morphology, and color. The interplay of these parameters at different redshifts will substantially affect the evolution of galaxies and, as a consequence, the evolution of them will provide important clues and constraints on the galaxy evolution models. In this work we focus on the evolution of the SFR, metallicity of the gas, and morphology of galaxies at low redshift in search of signs of evolution. We use the S2N2 diagnostic diagram as a tool to classify star--forming, composite, and AGN galaxies. We analyzed the evolution of the three principal BPT diagrams, estimating the SFR and specific SFR (SSFR) for our samples of galaxies, studying the luminosity and mass-metallicity relations, and analyzing the morphology of our sample of galaxies through the g-r color, concentration index, and SSFR. We found that the S2N2 is a reliable diagram to classify star--forming, composite, and AGNs galaxies. We demonstrate that the three principal BPT diagrams show an evolution toward higher values of [OIII]5007/Hb due to a metallicity decrement. We found an evolution in the mass-metallicity relation of ~ 0.2 dex for the redshift range 0.3 < z < 0.4 compared to our local one. From the analysis of the evolution of the SFR and SSFR as a function of the stellar mass and metallicity, we discovered a group of galaxies with higher SFR and SSFR at all redshift samples, whose morphology is consistent with those of late-type galaxies. Finally, the comparison of our local (0.04<z<0.1) with our higher redshift sample (0.3<z<0.4), show that the metallicity, the SFR and morphology, evolve toward lower values of metallicity, higher SFRs, and late--type morphologies for the redshift range 0.3<z<0.4Comment: 16 pages, 15 figures. Accepted for publication in A&

    Decomposing Star Formation and Active Galactic Nucleus with Spitzer Mid-Infrared Spectra: Luminosity Functions and Co-Evolution

    Get PDF
    We present Spitzer 7-38um spectra for a 24um flux limited sample of galaxies at z~0.7 in the COSMOS field. The detailed high-quality spectra allow us to cleanly separate star formation (SF) and active galactic nucleus (AGN) in individual galaxies. We first decompose mid-infrared Luminosity Functions (LFs). We find that the SF 8um and 15um LFs are well described by Schechter functions. AGNs dominate the space density at high luminosities, which leads to the shallow bright-end slope of the overall mid-infrared LFs. The total infrared (8-1000um) LF from 70um selected galaxies shows a shallower bright-end slope than the bolometrically corrected SF 15um LF, owing to the intrinsic dispersion in the mid-to-far-infrared spectral energy distributions. We then study the contemporary growth of galaxies and their supermassive black holes (BHs). Seven of the 31 Luminous Infrared Galaxies with Spitzer spectra host luminous AGNs, implying an AGN duty cycle of 23+/-9%. The time-averaged ratio of BH accretion rate and SF rate matches the local M_BH-M_bulge relation and the M_BH-M_host relation at z ~ 1. These results favor co-evolution scenarios in which BH growth and intense SF happen in the same event but the former spans a shorter lifetime than the latter. Finally, we compare our mid-infrared spectroscopic selection with other AGN identification methods and discuss candidate Compton-thick AGNs in the sample. While only half of the mid-infrared spectroscopically selected AGNs are detected in X-ray, ~90% of them can be identified with their near-infrared spectral indices.Comment: ApJ Accepted. emulateapj style. 16 pages, 9 figures, 4 table
    corecore