209 research outputs found

    The SPEDE electron spectrometer

    Get PDF
    This thesis presents SPEDE (SPectrometer for Electron DEtection) and documents its construction, testing and performance during commissioning at Jyv ̈askyl ̈a, Finland, before deployment at the HIE-ISOLDE facility at CERN coupled with the MINIBALL array to perform in-beam electron-gamma spectroscopy using post-accelerated radioactive ion beams. Results from the Coulomb excitation of 221Rn in 2012 are presented as an example of the need for the construction of a device like SPEDE. In-beam testing and initial commissioning experiments with stable beams took place in four stints during November, February, and May 2015, coupled with detectors from JUROGAMII. This spectrometer will help aid in fully understanding exotic regions of the nuclear chart such as regions with a high degree of octupole deformation, and in those nuclei exhibiting shape coexistence. For the first time, electron spectroscopy has been performed at the target position from states populated in accelerated nuclei via Coulomb excitation. The FWHM of SPEDE is approximately 7 keV at 320 keV, and Doppler correction was possible to improve Doppler broadened peaks to a resolution of 8.9 keV at a peak position of 186 and 196 keV. The results are intended to give the reader a full understanding of the detector and electronics, as well as the performance, capabilities, and usefulness of the spectrometer, both in simulated and in real-world situations

    The SPEDE spectrometer

    Get PDF
    The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of {\gamma} rays and conversion electrons in Coulomb-excitation experiments using radioactive ion beams

    Structure of HsdS Subunit from Thermoanaerobacter tengcongensis Sheds Lights on Mechanism of Dynamic Opening and Closing of Type I Methyltransferase

    Get PDF
    Type I DNA methyltransferases contain one specificity subunit (HsdS) and two modification subunits (HsdM). The electron microscopy model of M.EcoKI-M2S1 methyltransferase shows a reasonable closed state of this clamp-like enzyme, but the structure of the open state is still unclear. The 1.95 Å crystal structure of the specificity subunit from Thermoanaerobacter tengcongensis (TTE-HsdS) shows an unreported open form inter-domain orientation of this subunit. Based on the crystal structure of TTE-HsdS and the closed state model of M.EcoKI-M2S1, we constructed a potential open state model of type I methyltransferase. Mutational studies indicated that two α-helices (aa30-59 and aa466-495) of the TTE-HsdM subunit are important inter-subunit interaction sites in the TTE-M2S1 complex. DNA binding assays also highlighted the importance of the C-terminal region of TTE-HsdM for DNA binding by the TTE-M2S1 complex. On the basis of structural analysis, biochemical experiments and previous studies, we propose a dynamic opening and closing mechanism for type I methyltransferase

    Mastectomy or breast conserving surgery? Factors affecting type of surgical treatment for breast cancer – a classification tree approach

    Get PDF
    BACKGROUND: A critical choice facing breast cancer patients is which surgical treatment – mastectomy or breast conserving surgery (BCS) – is most appropriate. Several studies have investigated factors that impact the type of surgery chosen, identifying features such as place of residence, age at diagnosis, tumor size, socio-economic and racial/ethnic elements as relevant. Such assessment of "propensity" is important in understanding issues such as a reported under-utilisation of BCS among women for whom such treatment was not contraindicated. Using Western Australian (WA) data, we further examine the factors associated with the type of surgical treatment for breast cancer using a classification tree approach. This approach deals naturally with complicated interactions between factors, and so allows flexible and interpretable models for treatment choice to be built that add to the current understanding of this complex decision process. METHODS: Data was extracted from the WA Cancer Registry on women diagnosed with breast cancer in WA from 1990 to 2000. Subjects' treatment preferences were predicted from covariates using both classification trees and logistic regression. RESULTS: Tumor size was the primary determinant of patient choice, subjects with tumors smaller than 20 mm in diameter preferring BCS. For subjects with tumors greater than 20 mm in diameter factors such as patient age, nodal status, and tumor histology become relevant as predictors of patient choice. CONCLUSION: Classification trees perform as well as logistic regression for predicting patient choice, but are much easier to interpret for clinical use. The selected tree can inform clinicians' advice to patients

    Major-Effect Alleles at Relatively Few Loci Underlie Distinct Vernalization and Flowering Variation in Arabidopsis Accessions

    Get PDF
    We have explored the genetic basis of variation in vernalization requirement and response in Arabidopsis accessions, selected on the basis of their phenotypic distinctiveness. Phenotyping of F2 populations in different environments, plus fine mapping, indicated possible causative genes. Our data support the identification of FRI and FLC as candidates for the major-effect QTL underlying variation in vernalization response, and identify a weak FLC allele, caused by a Mutator-like transposon, contributing to flowering time variation in two N. American accessions. They also reveal a number of additional QTL that contribute to flowering time variation after saturating vernalization. One of these was the result of expression variation at the FT locus. Overall, our data suggest that distinct phenotypic variation in the vernalization and flowering response of Arabidopsis accessions is accounted for by variation that has arisen independently at relatively few major-effect loci

    Expression of estrogen receptor beta in the breast carcinoma of BRCA1 mutation carriers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancers (BC) in women carrying mutations in BRCA1 gene are more frequently estrogen receptor negative than the nonhereditary BC. Nevertheless, tamoxifen has been found to have a protective effect in preventing contralateral tumors in BRCA1 mutation carriers. The identification of the second human estrogen receptor, ERβ, raised a question of its role in hereditary breast cancer. The aim of this study was to assess the frequency of ERα, ERβ, PgR (progesterone receptor) and HER-2 expression in breast cancer patients with mutated <it>BRCA1 </it>gene and in the control group.</p> <p>Methods</p> <p>The study group consisted of 48 women with <it>BRCA1 </it>gene mutations confirmed by multiplex PCR assay. The patients were tested for three most common mutations of BRCA1 affecting the Polish population (5382insC, C61G, 4153delA). Immunostaining for ERα, ERβ and PgR (progesterone receptor) was performed using monoclonal antibodies against ERα, PgR (DakoCytomation), and polyclonal antibody against ERβ (Chemicon). The EnVision detection system was applied. The study population comprised a control group of 120 BC operated successively during the years 1998–99.</p> <p>Results</p> <p>The results of our investigation showed that <it>BRCA1 </it>mutation carriers were more likely to have ERα-negative breast cancer than those in the control group. Only 14.5% of <it>BRCA1</it>-related cancers were ERα-positive compared with 57.5% in the control group (<it>P </it>< 0.0001). On the contrary, the expression of ERβ protein was observed in 42% of <it>BRCA1</it>-related tumors and in 55% of the control group. An interesting finding was that most hereditary cancers (75% of the whole group) were triple-negative: ERα(-)/PgR(-)/HER-2(-) but almost half of this group (44.4%) showed the expression of ERβ.</p> <p>Conclusion</p> <p>In the case of <it>BRCA1</it>-associated tumors the expression of ERβ was significantly higher than the expression of ERα. This may explain the effectiveness of tamoxifen in preventing contralateral breast cancer development in <it>BRCA1 </it>mutation carriers.</p

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Statistical Coding and Decoding of Heartbeat Intervals

    Get PDF
    The heart integrates neuroregulatory messages into specific bands of frequency, such that the overall amplitude spectrum of the cardiac output reflects the variations of the autonomic nervous system. This modulatory mechanism seems to be well adjusted to the unpredictability of the cardiac demand, maintaining a proper cardiac regulation. A longstanding theory holds that biological organisms facing an ever-changing environment are likely to evolve adaptive mechanisms to extract essential features in order to adjust their behavior. The key question, however, has been to understand how the neural circuitry self-organizes these feature detectors to select behaviorally relevant information. Previous studies in computational perception suggest that a neural population enhances information that is important for survival by minimizing the statistical redundancy of the stimuli. Herein we investigate whether the cardiac system makes use of a redundancy reduction strategy to regulate the cardiac rhythm. Based on a network of neural filters optimized to code heartbeat intervals, we learn a population code that maximizes the information across the neural ensemble. The emerging population code displays filter tuning proprieties whose characteristics explain diverse aspects of the autonomic cardiac regulation, such as the compromise between fast and slow cardiac responses. We show that the filters yield responses that are quantitatively similar to observed heart rate responses during direct sympathetic or parasympathetic nerve stimulation. Our findings suggest that the heart decodes autonomic stimuli according to information theory principles analogous to how perceptual cues are encoded by sensory systems

    Apoptosis assays with lymphoma cell lines: problems and pitfalls

    Get PDF
    Much attention has been focused on the manner in which tumour cells die after treatment with cytotoxic agents. The basic question is whether cells die via apoptosis or via direct damage from the toxic agent. Various assays have been used to make this distinction. However, we show herein that some of the widely used assays for apoptosis do not in fact distinguish between apoptosis and other forms of cell death. More specifically: (1) A sub-G1 DNA content, identified by propidium iodide staining, does not distinguish between apoptotic and necrotic cells; (2) loss of mitochondrial membrane potential does not distinguish between apoptotic and necrotic cells, unless combined with an assay for an intact cell membrane; (3) subcellular fragments that arise from dead cells or from apoptotic bodies can interfere with some assays for apoptosis such as annexin V staining, as they may be close to the size of intact cells, making it difficult to decide where to set the size threshold; (4) irradiated cells display a large increase in nonspecific Ab binding. This may be partly due to an increase in cell size, but, regardless of the cause, it can lead to a mistaken conclusion that there is an increase in a particular antigen if appropriate control reagents are not tested; and (5) experiments utilising Ab crosslinking have neglected the role of cell aggregation, which can cause multiple problems including death from mechanical stress when cells are handled. Consideration of these factors will improve our ability to determine the mode of cell death
    corecore