717 research outputs found
Large enhancement of deuteron polarization with frequency modulated microwaves
We report a large enhancement of 1.7 in deuteron polarization up to values of
0.6 due to frequency modulation of the polarizing microwaves in a two liters
polarized target using the method of dynamic nuclear polarization. This target
was used during a deep inelastic polarized muon-deuteron scattering experiment
at CERN. Measurements of the electron paramagnetic resonance absorption spectra
show that frequency modulation gives rise to additional microwave absorption in
the spectral wings. Although these results are not understood theoretically,
they may provide a useful testing ground for the deeper understanding of
dynamic nuclear polarization.Comment: 10 pages, including the figures coming in uuencoded compressed tar
files in poltar.uu, which also brings cernart.sty and crna12.sty files neede
The BSUIN project
Baltic Sea Underground Innovation Network (BSUIN) is an European Union funded project that
extends capabilities of underground laboratories. The aim of the project is to join efforts in making
the underground laboratories in the Baltic Sea Region’s more accessible for innovation, business
development and science by improving the availability of information about the underground
facilities, service offerings, user experience, safety and marketing.The development of standards
for the characterization of underground laboratories will allow to compared them with each other.
This will help you choose the best places for physical measurements such as neutrino physics or
searching for dark matter. The project concerns laboratories where so far no measurements have
been made, and even undergrounds where there are no organized laboratories yet.The description
of the BSUIN project and the first results of characterization of natural radioactive background in
underground laboratories will be presented ˙ The BSUIN Project is funded by Interreg Baltic Sea
funding cooperation [2]
CAST solar axion search with 3^He buffer gas: Closing the hot dark matter gap
The CERN Axion Solar Telescope (CAST) has finished its search for solar
axions with 3^He buffer gas, covering the search range 0.64 eV < m_a <1.17 eV.
This closes the gap to the cosmological hot dark matter limit and actually
overlaps with it. From the absence of excess X-rays when the magnet was
pointing to the Sun we set a typical upper limit on the axion-photon coupling
of g_ag < 3.3 x 10^{-10} GeV^{-1} at 95% CL, with the exact value depending on
the pressure setting. Future direct solar axion searches will focus on
increasing the sensitivity to smaller values of g_a, for example by the
currently discussed next generation helioscope IAXO.Comment: 5 pages, 2 figures. Last version uploade
Results and perspectives of the solar axion search with the CAST experiment
The status of the solar axion search with the CERN Axion Solar Telescope
(CAST) will be presented. Recent results obtained by the use of He as a
buffer gas has allowed us to extend our sensitivity to higher axion masses than
our previous measurements with He. With about 1 h of data taking at each of
252 different pressure settings we have scanned the axion mass range 0.39 eV 0.64 eV. From the absence of an excess of x rays when the
magnet was pointing to the Sun we set a typical upper limit on the axion-photon
coupling of g GeV at 95% C.L., the
exact value depending on the pressure setting. CAST published results represent
the best experimental limit on the photon couplings to axions and other similar
exotic particles dubbed WISPs (Weakly Interacting Slim Particles) in the
considered mass range and for the first time the limit enters the region
favored by QCD axion models. Preliminary sensitivities for axion masses up to
1.16 eV will also be shown reaching mean upper limits on the axion-photon
coupling of g GeV at 95% C.L.
Expected sensibilities for the extension of the CAST program up to 2014 will be
presented. Moreover long term options for a new helioscope experiment will be
evoked.Comment: 4 pages, 2 pages, to appear in the proceedings of the 24th Rencontres
de Blois V2 A few affiliations were not corrected in previous version V3
Author adde
RD39 Status Report 2009
RD39 Status Report 2009. CERN RD39 Collaboration is developing super-radiation hard cryogenic silicon detectors for applications of LHC experiments and their future upgrades. The activities of RD39 Collaboration were focused in 2009 on concept of charge injected detector (CID)
Spin Structure of the Proton from Polarized Inclusive Deep-Inelastic Muon-Proton Scattering
We have measured the spin-dependent structure function in inclusive
deep-inelastic scattering of polarized muons off polarized protons, in the
kinematic range and . A
next-to-leading order QCD analysis is used to evolve the measured
to a fixed . The first moment of at is .
This result is below the prediction of the Ellis-Jaffe sum rule by more than
two standard deviations. The singlet axial charge is found to be . In the Adler-Bardeen factorization scheme, is
required to bring in agreement with the Quark-Parton Model. A
combined analysis of all available proton and deuteron data confirms the
Bjorken sum rule.Comment: 33 pages, 22 figures, uses ReVTex and smc.sty. submitted to Physical
Review
Solar axion search with the CAST experiment
The CAST (CERN Axion Solar Telescope) experiment is searching for solar
axions by their conversion into photons inside the magnet pipe of an LHC
dipole. The analysis of the data recorded during the first phase of the
experiment with vacuum in the magnet pipes has resulted in the most restrictive
experimental limit on the coupling constant of axions to photons. In the second
phase, CAST is operating with a buffer gas inside the magnet pipes in order to
extent the sensitivity of the experiment to higher axion masses. We will
present the first results on the data taking as well as the
system upgrades that have been operated in the last year in order to adapt the
experiment for the data taking. Expected sensitivities on the
coupling constant of axions to photons will be given for the recent run just started in March 2008.Comment: Proceedings of the ICHEP 2008 conferenc
Search for low Energy solar Axions with CAST
We have started the development of a detector system, sensitive to single
photons in the eV energy range, to be suitably coupled to one of the CAST
magnet ports. This system should open to CAST a window on possible detection of
low energy Axion Like Particles emitted by the sun. Preliminary tests have
involved a cooled photomultiplier tube coupled to the CAST magnet via a
Galileian telescope and a switched 40 m long optical fiber. This system has
reached the limit background level of the detector alone in ideal conditions,
and two solar tracking runs have been performed with it at CAST. Such a
measurement has never been done before with an axion helioscope. We will
present results from these runs and briefly discuss future detector
developments.Comment: Paper submitted to the proceedings of the "4th Patras Workshop on
Axions, WIMPs and WISPs", DESY, Hamburg Site - Germany, 18-21 June 2008.
Author affiliations are reported on the title page of the paper. In version
2: 1 affiliation change, 3 references adde
Polarised Quark Distributions in the Nucleon from Semi-Inclusive Spin Asymmetries
We present a measurement of semi-inclusive spin asymmetries for positively
and negatively charged hadrons from deep inelastic scattering of polarised
muons on polarised protons and deuterons in the range 1
GeV. Compared to our previous publication on this subject, with the new
data the statistical errors have been reduced by nearly a factor of two.
From these asymmetries and our inclusive spin asymmetries we determine the
polarised quark distributions of valence quarks and non-strange sea quarks at
=10 GeV. The polarised valence quark distribution, , is positive and the polarisation increases with . The polarised
valence quark distribution, , is negative and the non-strange
sea distribution, , is consistent with zero over the measured
range of . We find for the first moments , and
, where we assumed
. We also determine for the first time the
second moments of the valence distributions .Comment: 17 page
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
- …