352 research outputs found

    An exploratory study of engagement in a technology-supported substance abuse intervention

    Get PDF
    BACKGROUND: The continuing gap between the number of people requiring treatment for substance use disorders and those receiving treatment suggests the need to develop new approaches to service delivery. Meanwhile, the use of technology to provide counseling and support in the substance abuse field is exploding. Despite the increase in the use of technology in treatment, little is known about the impact of technology-supported interventions on access to services for substance use disorders. The E-TREAT intervention brings together the evidence-based practice of Motivational Interviewing and theories of Persuasive Technology to sustain clients' motivation to change substance use behaviors, provide support for change, and facilitate continuity across treatment settings. METHODS: This study used descriptive statistics, tests of statistical significance, and logistic regression to explore the characteristics and perceptions of the first 157 people who agreed to participate in E-TREAT and the predictors of their active engagement in E-TREAT services. In addition, responses to open-ended questions about the participants' experiences with the intervention were analyzed. RESULTS: The data reveal that clients who engaged in E-TREAT were more likely than those who did not engage to be female, have children and report a positive relationship with their recovery coach, and were less likely to have completed treatment for a substance use disorder in the past. A majority of people engaging in E-TREAT reported that it was helpful to talk with others with similar problems and that the program assisted them in developing a sense of community. CONCLUSIONS: The authors conclude that technology-assisted interventions hold promise in expanding access to treatment for substance use disorders especially for women and parents. Further, the characteristics of the relationship with a coach or helper may be critical to engagement in technology-supported interventions. Additional investigation into ways technology may be useful to enhance treatment access for certain subgroups is needed

    Current lifestyles in the context of future climate targets: analysis of long-term scenarios and consumer segments for residential and transport

    Get PDF
    The carbon emissions of individuals strongly depend on their lifestyle, both between and within regions. Therefore, lifestyle changes could have a significant potential for climate change mitigation. This potential is not fully explored in long-term scenarios, as the representation of behaviour change and consumer heterogeneity in these scenarios is limited. We explore the impact and feasibility of lifestyle and behaviour changes in achieving climate targets by analysing current per-capita emissions of transport and residential sectors for different regions and consumer segments within one of the regions, namely Japan. We compare these static snapshots to changes in per-capita emissions from consumption and technology changes in long-term mitigation scenarios. The analysis shows less need for reliance on technological solutions if consumption patterns become more sustainable. Furthermore, a large share of Japanese consumers is characterised by consumption patterns consistent with those in scenarios that achieve ambitious climate targets, especially regarding transport. The varied lifestyles highlight the importance of representing consumer heterogeneity in models and further analyses

    (Path)ways to sustainable living: The impact of the SLIM scenarios on long-term emissions

    Get PDF
    Sustainable lifestyles and behaviour changes can be vital in climate change mitigation. Various disciplines analyse the potential for such changes – but without much interaction. Qualitative studies look into the change process (e.g. social practice theory), while quantitative studies often focus on their impact in stylised cases (e.g. energy modelling). A more holistic approach can provide insightful scenarios with diverse lifestyle changes based on informed narratives for quantifying long-term impacts. This research explores how comprehensive sustainable lifestyle scenarios, coined SLIM (Sustainable Living in Models) scenarios, could contribute to transport and residential emission reductions. By translating and quantifying lifestyle scenario narratives through engagements with advisors and policymakers, we modelled two distinct lifestyle scenarios which differ in their degree of access to structural support. In one scenario, governments, corporations and cities leverage existing values and market systems to shape citizen and consumer preferences and everyday practices. In the other scenario, people adopt ambitious sustainable lifestyle behaviours and practices through peer-to-peer interaction and digital technology. We quantified the scenarios based on motivations, contextual factors, extent, and speed of lifestyle adoptions with regional differentiation. Furthermore, we applied heterogenous adopter groups to determine the model inputs. We present the resulting pathways in per capita emissions and more detailed changes in total emissions via decomposition analyses. We conclude that regional differentiation of the scenario narratives and modelling of intra-regional differences allows accounting for equity in lifestyle changes to a certain extent. Furthermore, new technologies are more important for enabling lifestyle change in a scenario with than a scenario without strong structural support. With strong structural support, lifestyle changes reduce transport and residential emissions to a larger degree (about 39% for Global North and 27% for Global South overall in 2050 relative to a “Middle-of-the-Road” SSP2 reference scenario in 2050). Thus, lifestyle changes in larger systems change are essential for effective climate change mitigation

    The Peroxisomal Targeting Signal 1 in sterol carrier protein 2 is autonomous and essential for receptor recognition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The majority of peroxisomal matrix proteins destined for translocation into the peroxisomal lumen are recognised <it>via </it>a C-terminal Peroxisomal Target Signal type 1 by the cycling receptor Pex5p. The only structure to date of Pex5p in complex with a cargo protein is that of the C-terminal cargo-binding domain of the receptor with sterol carrier protein 2, a small, model peroxisomal protein. In this study, we have tested the contribution of a second, ancillary receptor-cargo binding site, which was found in addition to the characterised Peroxisomal Target Signal type 1.</p> <p>Results</p> <p>To investigate the function of this secondary interface we have mutated two key residues from the ancillary binding site and analyzed the level of binding first by a yeast-two-hybrid assay, followed by quantitative measurement of the binding affinity and kinetics of purified protein components and finally, by <it>in vivo </it>measurements, to determine translocation capability. While a moderate but significant reduction of the interaction was found in binding assays, we were not able to measure any significant defects <it>in vivo</it>.</p> <p>Conclusions</p> <p>Our data therefore suggest that at least in the case of sterol carrier protein 2 the contribution of the second binding site is not essential for peroxisomal import. At this stage, however, we cannot rule out that other cargo proteins may require this ancillary binding site.</p

    Decomposition analysis of per capita emissions : a tool for assessing consumption changes and technology changes within scenarios

    Get PDF
    Recent studies show that behaviour changes can provide an essential contribution to achieving the Paris climate targets. Existing climate change mitigation scenarios primarily focus on technological change and underrepresent the possible contribution of behaviour change. This paper presents and applies a methodology to decompose the factors contributing to changes in per capita emissions in scenarios. With this approach, we determine the relative contribution to total emissions from changes in activity, the way activities are carried out, the intensity of activities, as well as fuel choice. The decomposition tool breaks down per capita emissions loosely following the Kaya Identity, allowing a comparison between the contributions of technology and consumption changes among regions and between various scenarios. We illustrate the use of the tool by applying it to three previously-published scenarios; a baseline scenario, a scenario with a selection of behaviour changes, and a 2 degrees C scenario with the same selection of behaviour changes. Within these scenarios, we explore the contribution of technology and consumption changes to total emission changes in the transport and residential sector, for a selection of both developed and developing regions. In doing so, the tool helps identify where specifically (i.e. via consumption or technology factors) different measures play a role in mitigating emissions and expose opportunities for improved representation of behaviour changes in integrated assessment models. This research shows the value of the decomposition tool and how the approach could be flexibly replicated for different global models based on available variables and aims. The application of the tool to previously-published scenarios shows substantial differences in consumption and technology changes from CO2 price and behaviour changes, in transport and residential per capita emissions and between developing and developed regions. Furthermore, the tool's application can highlight opportunities for future scenario development of a more nuanced and heterogeneous representation of behaviour and lifestyle changes in global models.Peer reviewe

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    Task-related oxygen uptake and symptoms during activities of daily life in CHF patients and healthy subjects

    Get PDF
    Patients with chronic heart failure (CHF) have a significantly lower peak aerobic capacity compared to healthy subjects, and, may therefore experience more inconvenience during the performance of domestic activities of daily life (ADLs). To date, the extent to which task-related oxygen uptake, heart rate, ventilation and symptoms during the performance of ADLs in CHF patients is different than in healthy subjects remains uncertain. General demographics, pulmonary function, body composition and peak aerobic capacity were assessed in 23 CHF outpatients and 20 healthy peers. In addition, the metabolic requirement of five simple self-paced domestic ADLs was assessed using a mobile oxycon. Task-related oxygen uptake (ml/min) was similar or lower in CHF patients compared to healthy subjects. In contrast, patients with CHF performing ADLs consumed oxygen at a higher proportion of their peak aerobic capacity than healthy subjects (p < 0.05). For example, getting dressed resulted in a mean task-related oxygen uptake of 49% of peak aerobic capacity, while sweeping the floor resulted in a mean task-related oxygen uptake of 52% of peak aerobic capacity, accompanied by significantly higher Borg symptom scores for dyspnea and fatigue (p < 0.05). Patients with CHF experience use a higher proportion of their peak aerobic capacity, peak ventilation and peak heart rate during the performance of simple self-paced domestic ADL than their healthy peers. These findings represent a necessary step in improving our understanding of improving what troubles patients the most—not being able to do the things that they could when they were healthy
    corecore