54 research outputs found
Into the blue â The blue economy model in Operation Phakisa âUnlocking the Ocean Economyâ Programme
Significance:
Economic and social benefits of ocean resource uses have motivated numerous nations, including South Africa, to turn to their Exclusive Economic Zones (EEZs) to advance economic development initiatives. Such initiatives result in increasing and spatially competitive pressures on ocean systems, compromising ecosystem services and market and non-market ocean benefits. It is critical to prioritise sustainable development in any ocean or blue economy advancement programmes (where the blue economy model most often parallels a terrestrial green economy, to incorporate sustainability and inclusivity pillars over and above the often GDP-centred ocean economy model). We explore multiple definitions of ocean and blue economies, discuss the importance of adopting blue economy models, and examine how the South African Operation Phakisa â Unlocking the Ocean Economy initiative presents numerous features aligned with ocean sustainable development, sustainability, and inclusivity, which strongly align it to a blue economy model
Gene expression profiling of breast tumours from New Zealand patients
AIMS: New Zealand has one of the highest rates of breast cancer incidence in the world. We investigated the gene expression profiles of breast tumours from New Zealand patients, compared them to gene expression profiles of international breast cancer cohorts and identified any associations between altered gene expression and the clinicopathological features of the tumours.
METHODS: Affymetrix microarrays were used to measure the gene expression profiles of 106 breast tumours from New Zealand patients. Gene expression data from six international breast cancer cohorts were collated, and all the gene expression data were analysed using standard bioinformatic and statistical tools.
RESULTS: Gene expression profiles associated with tumour ER and ERBB2 status, molecular subtype and selected gene expression signatures within the New Zealand cohort were consistent with those found in international cohorts. Significant differences in clinicopathological features such as tumour grade, tumour size and lymph node status were also observed between the New Zealand and international cohorts.
CONCLUSIONS: Gene expression profiles, which are a sensitive indicator of tumour biology, showed no clear diÂŹfference between breast tumours from New Zealand patients and those from non-New Zealand patients. This suggests that other factors may contribute to the high and increasing breast cancer incidence in New Zealand compared to international populations
The Future of Our Seas: Marine scientists and creative professionals collaborate for science communication
To increase awareness of the current challenges facing the marine environment,
the Future of Our Seas (FOOS) project brought together the expertise of
scientists, public engagement experts and creatives to train and support a
group of marine scientists in effective science communication and innovative
public engagement. This case study aims to inspire scientists and artists to
use the FOOS approach in training, activity design and development support
(hereafter called the âFOOS programmeâ) to collaboratively deliver novel
and creative engagement activities. The authors reflect on the experiences
of the marine scientists: (1) attending the FOOS communication and
engagement training; (2) creating and delivering public engagement activities;
(3) understanding our audience; and (4) collaborating with artists. The authors
also share what the artists and audiences learned from participating in the
FOOS public engagement activities. These different perspectives provide new
insights for the field with respect to designing collaborative training which
maximizes the impact of the training on participants, creative collaborators and
the public. Long-term benefits of taking part in the FOOS programme, such as
initiating future collaborative engagement activities and positively impacting
the scientistsâ research processes, are also highlighted
Topical Application of an Irreversible Small Molecule Inhibitor of Lysyl Oxidases Ameliorates Skin Scarring and Fibrosis
Scarring is a lifelong consequence of skin injury, with scar stiffness and poor appearance presenting physical and psychological barriers to a return to normal life. Lysyl oxidases are a family of enzymes that play a critical role in scar formation and maintenance. Lysyl oxidases stabilize the main component of scar tissue, collagen, and drive scar stiffness and appearance. Here we describe the development and characterisation of an irreversible lysyl oxidase inhibitor, PXS-6302. PXS-6302 is ideally suited for skin treatment, readily penetrating the skin when applied as a cream and abolishing lysyl oxidase activity. In murine models of injury and fibrosis, topical application reduces collagen deposition and cross-linking. Topical application of PXS-6302 after injury also significantly improves scar appearance without reducing tissue strength in porcine injury models. PXS-6302 therefore represents a promising therapeutic to ameliorate scar formation, with potentially broader applications in other fibrotic diseases
Clinical Oncology Society of Australia: Position statement on cancer-related malnutrition and sarcopenia
© 2020 The Authors. Nutrition & Dietetics published by John Wiley & Sons Australia, Ltd on behalf of Dietitians Australia. This position statement describes the recommendations of the Clinical Oncology Society of Australia (COSA) regarding management of cancer-related malnutrition and sarcopenia. A multidisciplinary working group completed a review of the literature, focused on evidence-based guidelines, systematic reviews and meta-analyses, to develop recommendations for the position statement. National consultation of the position statement content was undertaken through COSA members. All people with cancer should be screened for malnutrition and sarcopenia in all health settings at diagnosis and as the clinical situation changes throughout treatment and recovery. People identified as âat riskâ of malnutrition or with a high-risk cancer diagnosis or treatment plan should have a comprehensive nutrition assessment; people identified as âat riskâ of sarcopenia should have a comprehensive evaluation of muscle status using a combination of assessments for muscle mass, muscle strength and function. All people with cancer-related malnutrition and sarcopenia should have access to the core components of treatment, including medical nutrition therapy, targeted exercise prescription and physical and psychological symptom management. Treatment for cancer-related malnutrition and sarcopenia should be individualised, in collaboration with the multidisciplinary team (MDT), and tailored to meet needs at each stage of cancer treatment. Health services should ensure a broad range of health care professionals across the MDT have the skills and confidence to recognise malnutrition and sarcopenia to facilitate timely referrals and treatment. The position statement is expected to provide guidance at a national level to improve the multidisciplinary management of cancer-related malnutrition and sarcopenia
Blockade of ROS production inhibits oncogenic signaling in acute myeloid leukemia and amplifies response to precision therapies
Mutations in the type III receptor tyrosine kinase FLT3 are frequent in patients with acute myeloid leukemia (AML) and are associated with a poor prognosis. AML is characterized by the overproduction of reactive oxygen species (ROS), which can induce cysteine oxidation in redox-sensitive signaling proteins. Here, we sought to characterize the specific pathways affected by ROS in AML by assessing oncogenic signaling in primary AML samples. The oxidation or phosphorylation of signaling proteins that mediate growth and proliferation was increased in samples from patient subtypes with FLT3 mutations. These samples also showed increases in the oxidation of proteins in the ROS-producing Rac/NADPH oxidase-2 (NOX2) complex. Inhibition of NOX2 increased the apoptosis of FLT3-mutant AML cells in response to FLT3 inhibitors. NOX2 inhibition also reduced the phosphorylation and cysteine oxidation of FLT3 in patient-derived xenograft mouse models, suggesting that decreased oxidative stress reduces the oncogenic signaling of FLT3. In mice grafted with FLT3 mutant AML cells, treatment with a NOX2 inhibitor reduced the number of circulating cancer cells, and combining FLT3 and NOX2 inhibitors increased survival to a greater extent than either treatment alone. Together, these data raise the possibility that combining NOX2 and FLT3 inhibitors could improve the treatment of FLT3 mutant AML
Mobile Asteroid Surface Scout (MASCOT) - Design, Development and Delivery of a Small Asteroid Lander Aboard Hayabusa2
MASCOT is a small asteroid lander launched on December 3rd, 2014, aboard the Japanese HAYABUSA2 asteroid sample-return mission towards the 980 m diameter C-type near-Earth asteroid (162173) 1999 JU3.
MASCOT carries four full-scale asteroid science instruments and an uprighting and relocation device within a shoebox-sized 10 kg spacecraft; a complete lander comparable in mass and volume to a medium-sized science instrument on interplanetary missions.
Asteroid surface science will be obtained by: MicrOmega, a hyperspectral near- to mid-infrared soil microscope provided by IAS; MASCAM, a wide-angle Si CMOS camera with multicolour LED illumination unit; MARA, a multichannel thermal infrared surface radiometer; the magnetometer, MASMAG, provided by the Technical University of Braunschweig. Further information on the conditions at or near the landerâs surfaces is generated as a byproduct of attitude sensors and other system sensors.
MASCOT uses a highly integrated, ultra-lightweight truss-frame structure made from a CFRP-foam sandwich. It has three internal mechanisms: a preload release mechanism, to release the structural preload applied for launch across the separation mechanism interface; a separation mechanism, to realize the ejection of MASCOT from the semi-recessed stowed position within HAYABUSA2; and the mobility mechanism, for uprighting and hopping. MASCOT uses semi-passive thermal control with Multi-Layer Insulation, two heatpipes and a radiator for heat rejection during operational phases, and heaters for thermal control of the battery and the main electronics during cruise. MASCOT is powered by a primary battery during its on-asteroid operational phase, but supplied by HAYABUSA2 during cruise for check-out and calibration operations as well as thermal control. All housekeeping and scientific data is transmitted to Earth via a relay link with the HAYABUSA2 main-spacecraft, also during cruise operations. The link uses redundant omnidirectional UHF-Band transceivers and patch antennae on the lander. The MASCOT On-Board Computer is a redundant system providing data storage, instrument interfacing, command and data handling, as well as autonomous surface operation functions. Knowledge of the landerâs attitude on the asteroid is key to the success of its uprighting and hopping function. The attitude is determined by a threefold set of sensors: optical distance sensors, photo electric cells and thermal sensors. A range of experimental sensors is also carried.
MASCOT was build by the German Aerospace Center, DLR, with contributions from the French space agency, CNES.
The system design, science instruments, and operational concept of MASCOT will be presented, with sidenotes on the development of the mission and its integration with HAYABUSA2
Multimodal assessment of estrogen receptor mRNA profiles to quantify estrogen pathway activity in breast tumors
Background
Molecular markers have transformed our understanding of the heterogeneity of breast cancer and have allowed the identification of genomic profiles of estrogen receptor (ER)-α signaling. However, our understanding of the transcriptional profiles of ER signaling remains inadequate. Therefore, we sought to identify the genomic indicators of ER pathway activity that could supplement traditional immunohistochemical (IHC) assessments of ER status to better understand ER signaling in the breast tumors of individual patients.
Materials and Methods
We reduced ESR1 (gene encoding the ER-α protein) mRNA levels using small interfering RNA in ER+ MCF7 breast cancer cells and assayed for transcriptional changes using Affymetrix HG U133 Plus 2.0 arrays. We also compared 1034 ER+ and ERâ breast tumors from publicly available microarray data. The principal components of ER activity generated from these analyses and from other published estrogen signatures were compared with ESR1 expression, ER-α IHC, and patient survival.
Results
Genes differentially expressed in both analyses were associated with ER-α IHC and ESR1 mRNA expression. They were also significantly enriched for estrogen-driven molecular pathways associated with ESR1, cyclin D1 (CCND1), MYC (v-myc avian myelocytomatosis viral oncogene homolog), and NFKB (nuclear factor kappa B). Despite their differing constituent genes, the principal components generated from these new analyses and from previously published ER-associated gene lists were all associated with each other and with the survival of patients with breast cancer treated with endocrine therapies.
Conclusion
A biomarker of ER-α pathway activity, generated using ESR1-responsive mRNAs in MCF7 cells, when used alongside ER-α IHC and ESR1 mRNA expression, could provide a method for further stratification of patients and add insight into ER pathway activity in these patients
Antibiotic research and development: business as usual?
This article contends that poor economic incentives are an important reason for the lack of new drugs and explains how the DRIVE-AB intends to change the landscape by harnessing the expertise, motivation and diversity of its partner
A communal catalogue reveals Earthâs multiscale microbial diversity
Our growing awareness of the microbial worldâs importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earthâs microbial diversity
- âŠ