6 research outputs found

    Making sense of big data in health research: Towards an EU action plan.

    Get PDF
    Medicine and healthcare are undergoing profound changes. Whole-genome sequencing and high-resolution imaging technologies are key drivers of this rapid and crucial transformation. Technological innovation combined with automation and miniaturization has triggered an explosion in data production that will soon reach exabyte proportions. How are we going to deal with this exponential increase in data production? The potential of "big data" for improving health is enormous but, at the same time, we face a wide range of challenges to overcome urgently. Europe is very proud of its cultural diversity; however, exploitation of the data made available through advances in genomic medicine, imaging, and a wide range of mobile health applications or connected devices is hampered by numerous historical, technical, legal, and political barriers. European health systems and databases are diverse and fragmented. There is a lack of harmonization of data formats, processing, analysis, and data transfer, which leads to incompatibilities and lost opportunities. Legal frameworks for data sharing are evolving. Clinicians, researchers, and citizens need improved methods, tools, and training to generate, analyze, and query data effectively. Addressing these barriers will contribute to creating the European Single Market for health, which will improve health and healthcare for all Europeans

    Relationship between genome and epigenome--challenges and requirements for future research

    No full text
    Understanding the links between genetic, epigenetic and non-genetic factors throughout the lifespan and across generations and their role in disease susceptibility and disease progression offer entirely new avenues and solutions to major problems in our society. To overcome the numerous challenges, we have come up with nine major conclusions to set the vision for future policies and research agendas at the European level

    Erratum to: Making sense of big data in health research: towards an EU action plan

    Get PDF
    The published article [1] has two points of confusion in the section entitled “Technical challenges related to the management of electronic health records”. Firstly, the International Rare Diseases Research Consortium (IRDiRC) has developed policies and guidelines on approaches to data sharing meant to enable and improve the development of diagnoses and therapies for rare diseases. However, at present, IRDiRC has not developed best practices for the management of electronic health records (EHRs). Secondly, RARE-Bestpractices is a European Commission 7th Framework Programme (FP7) funded initiative, independent of IRDiRC. RARE-Bestpractices contributes to IRDiRC goals and objectives; however the initiative itself is not sponsored nor connected to IRDiRC

    Engineering Empires. A Cultural History of Technology in Nineteenth Century Britain

    Get PDF
    Understanding the links between genetic, epigenetic and non-genetic factors throughout the lifespan and across generations and their role in disease susceptibility and disease progression offer entirely new avenues and solutions to major problems in our society. To overcome the numerous challenges, we have come up with nine major conclusions to set the vision for future policies and research agendas at the European level

    LifeTime and improving European healthcare through cell-based interceptive medicine

    Get PDF
    LifeTime aims to track, understand and target human cells during the onset and progression of complex diseases and their response to therapy at single-cell resolution. This mission will be implemented through the development and integration of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during progression from health to disease. Analysis of such large molecular and clinical datasets will discover molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. Timely detection and interception of disease embedded in an ethical and patient-centered vision will be achieved through interactions across academia, hospitals, patient-associations, health data management systems and industry. Applying this strategy to key medical challenges in cancer, neurological, infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.We would like to acknowledge all participants that have attended and contributed to LifeTime meetings and workshops through many exciting presentations and discussions. We thank Johannes Richers for artwork. LifeTime has received funding from the European Unionʼs Horizon 2020 research and innovation framework programme under Grant agreement 820431

    LifeTime and improving European healthcare through cell-based interceptive medicine

    No full text
    AUTEURS : LifeTime Community Working GroupsInternational audienceHere we describe the LifeTime Initiative, which aims to track, understand and target human cells during the onset and progression of complex diseases, and to analyse their response to therapy at single-cell resolution. This mission will be implemented through the development, integration and application of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during the progression from health to disease. The analysis of large molecular and clinical datasets will identify molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. The timely detection and interception of disease embedded in an ethical and patient-centred vision will be achieved through interactions across academia, hospitals, patient associations, health data management systems and industry. The application of this strategy to key medical challenges in cancer, neurological and neuropsychiatric disorders, and infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade
    corecore