45 research outputs found

    Functional Hyperspectral Imaging by High-Related Vegetation Indices to Track the Wide-Spectrum Trichoderma Biocontrol Activity Against Soil-Borne Diseases of Baby-Leaf Vegetables

    Get PDF
    Research has been increasingly focusing on the selection of novel and effective biological control agents (BCAs) against soil-borne plant pathogens. The large-scale application of BCAs requires fast and robust screening methods for the evaluation of the efficacy of high numbers of candidates. In this context, the digital technologies can be applied not only for early disease detection but also for rapid performance analyses of BCAs. The present study investigates the ability of different Trichoderma spp. to contain the development of main baby-leaf vegetable pathogens and applies functional plant imaging to select the best performing antagonists against multiple pathosystems. Specifically, sixteen different Trichoderma spp. strains were characterized both in vivo and in vitro for their ability to contain R. solani, S. sclerotiorum and S. rolfsii development. All Trichoderma spp. showed, in vitro significant radial growth inhibition of the target phytopathogens. Furthermore, biocontrol trials were performed on wild rocket, green and red baby lettuces infected, respectively, with R. solani, S. sclerotiorum and S. rolfsii. The plant status was monitored by using hyperspectral imaging. Two strains, Tl35 and Ta56, belonging to T. longibrachiatum and T. atroviride species, significantly reduced disease incidence and severity (DI and DSI) in the three pathosystems. Vegetation indices, calculated on the hyperspectral data extracted from the images of plant-Trichoderma-pathogen interaction, proved to be suitable to refer about the plant health status. Four of them (OSAVI, SAVI, TSAVI and TVI) were found informative for all the pathosystems analyzed, resulting closely correlated to DSI according to significant changes in the spectral signatures among health, infected and bio-protected plants. Findings clearly indicate the possibility to promote sustainable disease management of crops by applying digital plant imaging as large-scale screening method of BCAs' effectiveness and precision biological control support

    Acetylcholine Reduces IKr and Prolongs Action Potentials in Human Ventricular Cardiomyocytes

    Get PDF
    Vagal nerve stimulation (VNS) has a meaningful basis as a potentially effective treatment for heart failure with reduced ejection fraction. There is an ongoing VNS randomized study, and four studies are completed. However, relatively little is known about the effect of acetylcholine (ACh) on repolarization in human ventricular cardiomyocytes, as well as the effect of ACh on the rapid component of the delayed rectifier K(+) current (I(Kr)). Here, we investigated the effect of ACh on the action potential parameters in human ventricular preparations and on I(Kr) in human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs). Using standard microelectrode technique, we demonstrated that ACh (5 µM) significantly increased the action potential duration in human left ventricular myocardial slices. ACh (5 µM) also prolonged repolarization in a human Purkinje fiber and a papillary muscle. Optical mapping revealed that ACh increased the action potential duration in human left ventricular myocardial slices and that the effect was dose-dependent. Perforated patch clamp experiments demonstrated action potential prolongation and a significant decrease in I(Kr) by ACh (5 µM) in hiPSC-CMs. Computer simulations of the electrical activity of a human ventricular cardiomyocyte showed an increase in action potential duration upon implementation of the experimentally observed ACh-induced changes in the fully activated conductance and steady-state activation of I(Kr). Our findings support the hypothesis that ACh can influence the repolarization in human ventricular cardiomyocytes by at least changes in I(Kr)

    Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility

    Get PDF
    Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings

    Search for the optical counterpart of the GW170814 gravitational wave event with the VLT Survey Telescope

    Get PDF
    We report on the search for the optical counterpart of the gravitational event GW170814, which was carried out with the VLT Survey Telescope (VST) by the GRAvitational Wave Inaf TeAm. Observations started 17.5 h after the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo alert and we covered an area of 99 deg2 that encloses ∼ 77{{ per cent}} and ∼ 59{{ per cent}} of the initial and refined localization probability regions, respectively. A total of six epochs were secured over nearly two months. The survey reached an average limiting magnitude of 22 AB mag in the r band. After assuming the model described in Perna, Lazzati & Farr, that derives as possible optical counterpart of a BBH (binary black hole) event a transient source declining in about one day, we have computed a survey efficiency of about 5{{ per cent}}. This paper describes the VST observational strategy and the results obtained by our analysis pipelines developed to search for optical transients in multi-epoch images. We report the catalogue of the candidates with possible identifications based on light-curve fitting. We have identified two dozens of SNe, nine AGNs, and one QSO. Nineteen transients characterized by a single detection were not classified. We have restricted our analysis only to the candidates that fall into the refined localization map. None out of 39 left candidates could be positively associated with GW170814. This result implies that the possible emission of optical radiation from a BBH merger had to be fainter than r ∼ 22 (Loptical ∼ 1.4 × 1042 erg s-1) on a time interval ranging from a few hours up to two months after the gravitational wave event

    Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility.

    Get PDF
    Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel Na1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on Na1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings

    The Gaia mission

    Get PDF
    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. http://www.cosmos.esa.int/gai

    Estimation of Intravoxel Incoherent Motion parametric maps from diffusion-weighted MRI using Bayesian Probability Theory

    No full text
    Diffusion-Weighted magnetic resonance Imaging (DWI) is a method that uses the diffusion of water molecules to generate contrast in Magnetic Resonance (MR) images. The DWI diagnostic potential resides in its ability to provide information that reflects tissue cellularity and the integrity of cellular membrane. Conventional DWI assumes that all water molecules behave the same within a voxel. IntraVoxel Incoherent Motion (IVIM) instead is an advanced diffusion modelling described by Le Bihan et al., which allows separation between the water molecular diffusion (due to Brownian motion) and the microcirculation of blood (also called pseudo-diffusion). The first purpose of this thesis is to develop a customized platform for IVIM maps reconstruction of the liver using the major algorithms in literature. Indeed, one of the most important potential clinical application of IVIM is the liver fibrosis staging. The second purpose is to compare the variability, precision, and accuracy of five different algorithms (three Levenberg–Marquardt based and two Bayesian-Probability based) for computing IVIM parameters. It will be shown how the Bayesian-Probability based algorithms should be preferred due their ability to reduce estimation uncertainty and to preserve spatial features in the parametric maps
    corecore