1,115 research outputs found

    Experimental evaluation of an electro-Hydrostatic actuator for subsea applications in a hyperbaric chamber

    Get PDF
    A novel Electro-Hydrostatic Actuator (EHA) prototype – designed to operate on subsea gate valves in deep and ultra-deep water – is analysed and qualified in terms of functionality under design and normative constraints. The prototype is assembled in a test bench for load control in a hyperbaric chamber where the high subsea environmental pressure can be emulated. The process variables under evaluation are monitored through a set of pressure and position sensors, which are part of the prototype design. The experimental results demonstrate a robust behaviour of the actuator concerning the imposed external pressure and load forces even with a forced limitation in its power input. Moreover, the prototype performs consistently throughout the entire endurance trial, asserting high reliability. With the results obtained, the subsea EHA concept is effectually eligible to a technology readiness level 4, according to the API 17N

    Evaluation of self-perception of mechanical ventilation knowledge among Brazilian final-year medical students, residents and emergency physicians

    Get PDF
    OBJECTIVE: To present self-assessments of knowledge about mechanical ventilation made by final-year medical students, residents, and physicians taking qualifying courses at the Brazilian Society of Internal Medicine who work in urgent and emergency settings. METHODS: A 34-item questionnaire comprising different areas of knowledge and training in mechanical ventilation was given to 806 medical students, residents, and participants in qualifying courses at 11 medical schools in Brazil. The questionnaire’s self-assessment items for knowledge were transformed into scores. RESULTS: The average score among all participants was 21% (0-100%). Of the total, 85% respondents felt they did not receive sufficient information about mechanical ventilation during medical training. Additionally, 77% of the group reported that they would not know when to start noninvasive ventilation in a patient, and 81%, 81%, and 89% would not know how to start volume control, pressure control and pressure support ventilation modes, respectively. Furthermore, 86.4% and 94% of the participants believed they would not identify the basic principles of mechanical ventilation in patients with obstructive pulmonary disease and acute respiratory distress syndrome, respectively, and would feel insecure beginning ventilation. Finally, 77% said they would fear for the safety of a patient requiring invasive mechanical ventilation under their care. CONCLUSION: Self-assessment of knowledge and self-perception of safety for managing mechanical ventilation were deficient among residents, students and emergency physicians from a sample in Brazil

    Evaluation of self-perception of mechanical ventilation knowledge among Brazilian final-year medical students, residents and emergency physicians

    Get PDF
    OBJECTIVE: To present self-assessments of knowledge about mechanical ventilation made by final-year medical students, residents, and physicians taking qualifying courses at the Brazilian Society of Internal Medicine who work in urgent and emergency settings. METHODS: A 34-item questionnaire comprising different areas of knowledge and training in mechanical ventilation was given to 806 medical students, residents, and participants in qualifying courses at 11 medical schools in Brazil. The questionnaire's self-assessment items for knowledge were transformed into scores. RESULTS: The average score among all participants was 21% (0-100%). Of the total, 85% respondents felt they did not receive sufficient information about mechanical ventilation during medical training. Additionally, 77% of the group reported that they would not know when to start noninvasive ventilation in a patient, and 81%, 81%, and 89% would not know how to start volume control, pressure control and pressure support ventilation modes, respectively. Furthermore, 86.4% and 94% of the participants believed they would not identify the basic principles of mechanical ventilation in patients with obstructive pulmonary disease and acute respiratory distress syndrome, respectively, and would feel insecure beginning ventilation. Finally, 77% said they would fear for the safety of a patient requiring invasive mechanical ventilation under their care. CONCLUSION: Self-assessment of knowledge and self-perception of safety for managing mechanical ventilation were deficient among residents, students and emergency physicians from a sample in Brazil.Univ Fed Sao Paulo UNIFESP, Dept Cirurgia, Sao Paulo, SP, BrazilUniv Fed Paraiba, Dept Cardiol, Joao Pessoa, Paraiba, BrazilUniv Evangel Anapolis, Anapolis, Go, BrazilDuke Univ, Med Ctr, Duke Clin Res Inst, Durham, NC USAUniv Fed Sao Paulo UNIFESP, Dept Cirurgia, Sao Paulo, SP, BrazilWeb of Scienc

    CONVIVENDO COM UMA ESTOMIA INTESTINAL: IMPACTO NO ESTILO DE VIDA, ACEITAÇÃO DA DOENÇA E CUIDADOS

    Get PDF
    Descrever a percepção do indivíduo estomizado quanto à vivência com a estomia intestinal. Pesquisa qualitativa, realizado em um ambulatório de estomias intestinais, a coleta de dados ocorreu de janeiro a fevereiro de 2022. Foram convidados pacientes com estomas intestinais de eliminação provisória ou definitiva. Foi elaborado um roteiro semiestruturado com perguntas amplas que possibilitaram explorar a percepção do indivíduo estomizado quanto à vivência com a estomiaintestinalParticiparam 14 (100%) indivíduos com estomia intestinal. A análise dos dados possibilitou a identificação de três núcleos temáticos: Impactos da Estomização no Estilo de Vida; Aceitação da Doença e Cuidados com a Ostomização. Conclui-se que esse estudo permitiu conhecer a percepção das pessoas estomizadas e necessidade de uma formação que transcenda o aspecto biológico e valorize as habilidades socioafetivas e as relações terapêuticas entre profissionais da saúde e a pessoa em adoecimento.&nbsp

    Marine biotechnology in Brazil : recent developments and its potential for innovation

    Get PDF
    Marine biotechnology is an emerging field in Brazil and includes the exploration of marine microbial products, aquaculture, omics, isolation of biologically active compounds, identification of biosynthetic gene clusters from symbiotic microorganisms, investigation of invertebrate diseases caused by potentially pathogenic marine microbes, and development of antifouling compounds. Furthermore, the field also encompasses description of new biological niches, current threats, preservation strategies as well as its biotechnological potential. Finally, it is important to depict some of the major approaches and tools being employed to such end. To address the challenges of marine biotechnology, the Brazilian government, through the Ministry of Science, Technology, Innovation, and Communication, has established the National Research Network in Marine Biotechnology (BiotecMar) (www.biotecmar.sage.coppe.ufrj.br). Its main objective is to harness marine biodiversity and develop the marine bioeconomy through innovative research

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore