78 research outputs found

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF
    The first measurement of the cross section for coherent J/ψ photoproduction as a function of |t|, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02TeV with the J/ψ produced in the central rapidity region |y|<0.8, which corresponds to the small Bjorken-x range (0.3−1.4)×10−3. The measured |t|-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky–Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken-x.publishedVersio

    Linear and non-linear flow mode in Pb-Pb collisions at root sNN=2.76 TeV

    Get PDF
    The second and the third order anisotropic flow, V-2 and V-3, are mostly determined by the corresponding initial spatial anisotropy coefficients, epsilon(2) and epsilon(3), in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn(n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V-n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range |eta| <0.8 and the transverse momentum range 0.2 <p(T)<5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system. (C) 2017 The Author(s). Published by Elsevier B.V.Peer reviewe

    D-Meson Azimuthal Anisotropy in Midcentral Pb-Pb Collisions root S-NN=5.02 TeV

    Get PDF
    The azimuthal anisotropy coefficient v(2) of prompt D-0, D+, D*+, and D-s(+) mesons was measured in midcentral (30%-50% centrality class) Pb-Pb collisions at a center-of-mass energy per nucleon pair root s(NN)=5.02 TeV, with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays at midrapidity, |y| < 0.8, in the transverse momentum interval 1 < p(T) < 24 GeV/c. The measured D-meson v(2) has similar values as that of charged pions. The D-s(+) v(2), measured for the first time, is found to be compatible with that of nonstrange D mesons. The measurements are compared with theoretical calculations of charm-quark transport in a hydrodynamically expanding medium and have the potential to constrain medium parameters.Peer reviewe

    Production of deuterons, tritons, He-3 nuclei, and their antinuclei in pp collisions at root s=0.9, 2.76, and 7 TeV

    Get PDF
    Invariant differential yields of deuterons and antideuterons in pp collisions at root s = 0.9, 2.76 and 7 TeV and the yields of tritons, He-3 nuclei, and their antinuclei at root s = 7 TeV have been measured with the ALICE detector at the CERN Large Hadron Collider. The measurements cover a wide transverse momentum (p(T)) range in the rapidity interval vertical bar y vertical bar <0.5, extending both the energy and the pT reach of previous measurements up to 3 GeV/c for A = 2 and 6 GeV/c for A = 3. The coalescence parameters of (anti) deuterons and 3 He nuclei exhibit an increasing trend with pT and are found to be compatible with measurements in pA collisions at low p(T) and lower energies. The integrated yields decrease by a factor of about 1000 for each increase of the mass number with one (anti) nucleon. Furthermore, the deuteron-to-proton ratio is reported as a function of the average charged particle multiplicity at different center-of-mass energies.Peer reviewe

    Flow Dominance and Factorization of Transverse Momentum Correlations in Pb-Pb Collisions at the LHC

    Get PDF
    We present the first measurement of the two-particle transverse momentum differential correlation function, P2≡ ΔpTΔpT/ pT2, in Pb-Pb collisions at sNN=2.76 TeV. Results for P2 are reported as a function of the relative pseudorapidity (Δη) and azimuthal angle (Δφ) between two particles for different collision centralities. The Δφ dependence is found to be largely independent of Δη for |Δη|≄0.9. In the 5% most central Pb-Pb collisions, the two-particle transverse momentum correlation function exhibits a clear double-hump structure around Δφ=π (i.e., on the away side), which is not observed in number correlations in the same centrality range, and thus provides an indication of the dominance of triangular flow in this collision centrality. Fourier decompositions of P2, studied as a function of the collision centrality, show that correlations at |Δη|≄0.9 can be well reproduced by a flow ansatz based on the notion that measured transverse momentum correlations are strictly determined by the collective motion of the system

    K*(892)(0) and phi(1020)meson production at high transverse momentum in pp and Pb-Pb collisions at root sNN=2.76 TeV

    Get PDF
    The production of K∗(892)0 and φ(1020) mesons in proton-proton (pp) and lead-lead (Pb-Pb) collisions at √sNN = 2.76 TeV has been analyzed using a high luminosity data sample accumulated in 2011 with the ALICE detector at the Large Hadron Collider (LHC). Transverse momentum (pT) spectra have been measured for K∗(892)0 and φ(1020) mesons via their hadronic decay channels for pT up to 20 GeV/c. The measurements in pp collisions have been compared to model calculations and used to determine the nuclear modification factor and particle ratios. The K∗(892)0/K ratio exhibits significant reduction from pp to central Pb-Pb collisions, consistent with the suppression of the K∗(892)0 yield at low pT due to rescattering of its decay products in the hadronic phase. In central Pb-Pb collisions the pT dependent φ(1020)/π and K∗(892)0/π ratios show an enhancement over pp collisions for pT ≈ 3 GeV/c, consistent with previous observations of strong radial flow. At high pT, particle ratios in Pb-Pb collisions are similar to those measured in pp collisions. In central Pb-Pb collisions, the production of K∗(892)0 and φ(1020) mesons is suppressed for pT &gt; 8 GeV/c. This suppression is similar to that of charged pions, kaons, and protons, indicating that the suppression does not depend on particle mass or flavor in the light quark sector

    ALICE Collaboration

    Get PDF

    J/psi production as a function of charged-particle pseudorapidity density in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    We report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dNch/dη in p–Pb collisions at sNN=5.02TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dNch/dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/ψ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity

    First measurement of jet mass in Pb-Pb and p-Pb collisions at the LHC

    Get PDF
    This letter presents the first measurement of jet mass in Pb–Pb and p–Pb collisions at sNN=2.76 TeV and sNN=5.02 TeV, respectively. Both the jet energy and the jet mass are expected to be sensitive to jet quenching in the hot Quantum Chromodynamics (QCD) matter created in nuclear collisions at collider energies. Jets are reconstructed from charged particles using the anti-kT jet algorithm and resolution parameter R=0.4. The jets are measured in the pseudorapidity range |ηjet|<0.5 and in three intervals of transverse momentum between 60 GeV/c and 120 GeV/c. The measurement of the jet mass in central Pb–Pb collisions is compared to the jet mass as measured in p–Pb reference collisions, to vacuum event generators, and to models including jet quenching. It is observed that the jet mass in central Pb–Pb collisions is consistent within uncertainties with p–Pb reference measurements. Furthermore, the measured jet mass in Pb–Pb collisions is not reproduced by the quenching models considered in this letter and is found to be consistent with PYTHIA expectations within systematic uncertainties

    Kaon femtoscopy in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    We present the results of three-dimensional femtoscopic analyses for charged and neutral kaons recorded by ALICE in Pb-Pb collisions at root s(NN) = 2.76 TeV. Femtoscopy is used to measure the space-time characteristics of particle production from the effects of quantum statistics and final-state interactions in two-particle correlations. Kaon femtoscopy is an important supplement to that of pions because it allows one to distinguish between different model scenarios working equally well for pions. In particular, we compare the measured three-dimensional kaon radii with a purely hydrodynamical calculation and a model where the hydrodynamic phase is followed by a hadronic rescattering stage. The former predicts an approximate transverse mass (m(T)) scaling of source radii obtained from pion and kaon correlations. This m(T) scaling appears to be broken in our data, which indicates the importance of the hadronic rescattering phase at LHC energies. A k(T) scaling of pion and kaon source radii is observed instead. The time of maximal emission of the system is estimated by using the three-dimensional femtoscopic analysis for kaons. The measured emission time is larger than that of pions. Our observation is well supported by the hydrokinetic model predictions
    • 

    corecore