30 research outputs found

    MicroRNA Let-7f Inhibits Tumor Invasion and Metastasis by Targeting MYH9 in Human Gastric Cancer

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are important regulators that play key roles in tumorigenesis and tumor progression. A previous report has shown that let-7 family members can act as tumor suppressors in many cancers. Through miRNA array, we found that let-7f was downregulated in the highly metastatic potential gastric cancer cell lines GC9811-P and SGC7901-M, when compared with their parental cell lines, GC9811 and SGC7901-NM; however, the mechanism was not clear. In this study, we investigate whether let-7f acts as a tumor suppressor to inhibit invasion and metastasis in gastric cancers. METHODOLOGY/PRINCIPAL: Real-time PCR showed decreased levels of let-7f expression in metastatic gastric cancer tissues and cell lines that are potentially highly metastatic. Cell invasion and migration were significantly impaired in GC9811-P and SGC7901-M cell lines after transfection with let-7f-mimics. Nude mice with xenograft models of gastric cancer confirmed that let-7f could inhibit gastric cancer metastasis in vivo after transfection by the lentivirus pGCsil-GFP- let-7f. Luciferase reporter assays demonstrated that let-7f directly binds to the 3'UTR of MYH9, which codes for myosin IIA, and real-time PCR and Western blotting further indicated that let-7f downregulated the expression of myosin IIA at the mRNA and protein levels. CONCLUSIONS/SIGNIFICANCE: Our study demonstrated that overexpression of let-7f in gastric cancer could inhibit invasion and migration of gastric cancer cells through directly targeting the tumor metastasis-associated gene MYH9. These data suggest that let-7f may be a novel therapeutic candidate for gastric cancer, given its ability to reduce cell invasion and metastasis

    Identification of a Kinase Profile that Predicts Chromosome Damage Induced by Small Molecule Kinase Inhibitors

    Get PDF
    Kinases are heavily pursued pharmaceutical targets because of their mechanistic role in many diseases. Small molecule kinase inhibitors (SMKIs) are a compound class that includes marketed drugs and compounds in various stages of drug development. While effective, many SMKIs have been associated with toxicity including chromosomal damage. Screening for kinase-mediated toxicity as early as possible is crucial, as is a better understanding of how off-target kinase inhibition may give rise to chromosomal damage. To that end, we employed a competitive binding assay and an analytical method to predict the toxicity of SMKIs. Specifically, we developed a model based on the binding affinity of SMKIs to a panel of kinases to predict whether a compound tests positive for chromosome damage. As training data, we used the binding affinity of 113 SMKIs against a representative subset of all kinases (290 kinases), yielding a 113×290 data matrix. Additionally, these 113 SMKIs were tested for genotoxicity in an in vitro micronucleus test (MNT). Among a variety of models from our analytical toolbox, we selected using cross-validation a combination of feature selection and pattern recognition techniques: Kolmogorov-Smirnov/T-test hybrid as a univariate filter, followed by Random Forests for feature selection and Support Vector Machines (SVM) for pattern recognition. Feature selection identified 21 kinases predictive of MNT. Using the corresponding binding affinities, the SVM could accurately predict MNT results with 85% accuracy (68% sensitivity, 91% specificity). This indicates that kinase inhibition profiles are predictive of SMKI genotoxicity. While in vitro testing is required for regulatory review, our analysis identified a fast and cost-efficient method for screening out compounds earlier in drug development. Equally important, by identifying a panel of kinases predictive of genotoxicity, we provide medicinal chemists a set of kinases to avoid when designing compounds, thereby providing a basis for rational drug design away from genotoxicity

    Myosin II Motor Proteins with Different Functions Determine the Fate of Lamellipodia Extension during Cell Spreading

    Get PDF
    Non-muscle cells express multiple myosin-II motor proteins myosin IIA, myosin IIB and myosin IIC transcribed from different loci in the human genome. Due to a significant homology in their sequences, these ubiquitously expressed myosin II motor proteins are believed to have overlapping cellular functions, but the mechanistic details are not elucidated. The present study uncovered a mechanism that coordinates the distinctly localized myosin IIA and myosin IIB with unexpected opposite mechanical roles in maneuvering lamellipodia extension, a critical step in the initiation of cell invasion, spreading, and migration. Myosin IIB motor protein by localizing at the front drives lamellipodia extension during cell spreading. On the other hand, myosin IIA localizes next to myosin IIB and attenuates or retracts lamellipodia extension. Myosin IIA and IIB increase cell adhesion by regulating focal contacts formation in the spreading margins and central part of the spreading cell, respectively. Spreading cells expressing both myosin IIA and myosin IIB motor proteins display an organized actin network consisting of retrograde filaments, arcs and central filaments attached to focal contacts. This organized actin network especially arcs and focal contacts formation in the spreading margins were lost in myosin IIÂ cells. Surprisingly, myosin IIB̂ cells displayed long parallel actin filaments connected to focal contacts in the spreading margins. Thus, with different roles in the regulation of the actin network and focal contacts formation, both myosin IIA and IIB determine the fate of lamellipodia extension during cell spreading

    Joining S100 proteins and migration:for better or for worse, in sickness and in health

    Get PDF
    The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used. © 2013 Springer Basel

    Non-muscle myosin II in disease: mechanisms and therapeutic opportunities

    Get PDF

    The role of Hsp27 and actin in the regulation of movement in human cancer cells responding to heat shock

    No full text
    Human heat shock 27-kDa protein 1 (HSPB1)/heat shock protein (Hsp) 27 is a small heat shock protein which is thought to have several roles within the cell. One of these roles includes regulating actin filament dynamics in cell movement, since Hsp27 has previously been found to inhibit actin polymerization in vitro. In this study, the role of Hsp27 in regulating actin filament dynamics is further investigated. Hsp27 protein levels were reduced using siRNA in SW480 cells, a human colon cancer cell line. An in vitro wound closure assay showed that cells with knocked down Hsp27 levels were unable to close wounds, indicating that this protein is involved in regulating cell motility. Immunoprecipitation pull down assays were done, to observe if and when Hsp27 and actin are in the same complex within the cell, before and after heat shock. At all time points tested, Hsp27 and actin were present in the same cell lysate fraction. Lastly, indirect immunostaining was done before and after heat shock to evaluate Hsp27 and actin interaction in cells. Hsp27 and actin showed colocalization before heat shock, little association 3 h after heat shock, and increased association 24 h after heat shock. Cytoprotection was observed as early as 3 h after heat shock, yet cells were still able to move. These results show that Hsp27 and actin are in the same complex in cells and that Hsp27 is important for cell motility
    corecore