588 research outputs found
Study of cosolvent-induced α-chymotrypsin fibrillogenesis: Does protein surface hydrophobicity trigger early stages of aggregation reaction?
The misfolding of specific proteins is often associated with their assembly into fibrillar aggregates, commonly termed amyloid fibrils. Despite the many efforts expended to characterize amyloid formation in vitro, there is no deep knowledge about the environment (in which aggregation occurs) as well as mechanism of this type of protein aggregation. Alpha-chymotrypsin was recently driven toward amyloid aggregation by the addition of intermediate concentrations of trifluoroethanol. In the present study, approaches such as turbidimetric, thermodynamic, intrinsic fluorescence and quenching studies as well as chemical modification have been successfully used to elucidate the underlying role of hydrophobic interactions (involved in early stages of amyloid formation) in α-chymotrypsin-based experimental system. © 2009 Springer Science+Business Media, LLC
The association of health literacy with adherence in older 2 adults, and its role in interventions: a systematic meta-review
Background: Low health literacy is a common problem among older adults. It is often suggested to be associated with poor adherence. This suggested association implies a need for effective adherence interventions in low health literate people. However, previous reviews show mixed results on the association between low health literacy and poor adherence. A systematic meta-review of systematic reviews was conducted to study the association between health literacy and adherence in adults above the age of 50. Evidence for the effectiveness of adherence interventions among adults in this older age group with low health literacy was also explored. Methods: Eight electronic databases (MEDLINE, ERIC, EMBASE, PsycINFO, CINAHL, DARE, the Cochrane Library, and Web of Knowledge) were searched using a variety of keywords regarding health literacy and adherence. Additionally, references of identified articles were checked. Systematic reviews were included if they assessed the association between health literacy and adherence or evaluated the effectiveness of interventions to improve adherence in adults with low health literacy. The AMSTAR tool was used to assess the quality of the included reviews. The selection procedure, data-extraction, and quality assessment were performed by two independent reviewers. Seventeen reviews were selected for inclusion. Results: Reviews varied widely in quality. Both reviews of high and low quality found only weak or mixed associations between health literacy and adherence among older adults. Reviews report on seven studies that assess the effectiveness of adherence interventions among low health literate older adults. The results suggest that some adherence interventions are effective for this group. The interventions described in the reviews focused mainly on education and on lowering the health literacy demands of adherence instructions. No conclusions could be drawn about which type of intervention could be most beneficial for this population. Conclusions: Evidence on the association between health literacy and adherence in older adults is relatively weak. Adherence interventions are potentially effective for the vulnerable population of older adults with low levels of health literacy, but the evidence on this topic is limited. Further research is needed on the association between health literacy and general health behavior, and on the effectiveness of interventions
Measurement of the Ge 70 (n,γ) cross section up to 300 keV at the CERN n-TOF facility
©2019 American Physical Society.Neutron capture data on intermediate mass nuclei are of key importance to nucleosynthesis in the weak component of the slow neutron capture processes, which occurs in massive stars. The (n,γ) cross section on Ge70, which is mainly produced in the s process, was measured at the neutron time-of-flight facility n-TOF at CERN. Resonance capture kernels were determined up to 40 keV neutron energy and average cross sections up to 300 keV. Stellar cross sections were calculated from kT=5 keV to kT=100 keV and are in very good agreement with a previous measurement by Walter and Beer (1985) and recent evaluations. Average cross sections are in agreement with Walter and Beer (1985) over most of the neutron energy range covered, while they are systematically smaller for neutron energies above 150 keV. We have calculated isotopic abundances produced in s-process environments in a 25 solar mass star for two initial metallicities (below solar and close to solar). While the low metallicity model reproduces best the solar system germanium isotopic abundances, the close to solar model shows a good global match to solar system abundances in the range of mass numbers A=60-80.Peer reviewedFinal Published versio
Cost-effectiveness of percutaneous coronary intervention with cobalt-chromium everolimus eluting stents versus bare metal stents: Results from a patient level meta-analysis of randomized trials
Background: Second-generation drug eluting stents (DES) may reduce costs and improve clinical outcomes compared to first-generation DES with improved cost-effectiveness when compared to bare metal stents (BMS). We aimed to conduct an economic evaluation of a cobalt-chromium everolimus eluting stent (Co-Cr EES) compared with BMS in percutaneous coronary intervention (PCI). Objective: To conduct a cost-effectiveness analysis (CEA) of a cobalt-chromium everolimus eluting stent (Co-Cr EES) versus BMS in PCI. Methods: A Markov state transition model with a 2-year time horizon was applied from a US Medicare setting with patients undergoing PCI with Co-Cr EES or BMS. Baseline characteristics, treatment effects, and safety measures were taken from a patient level meta-analysis of 5 RCTs (n=4,896). The base-case analysis evaluated stent-related outcomes; a secondary analysis considered the broader set of outcomes reported in the meta-analysis. Results: The base-case and secondary analyses reported an additional 0.018 and 0.013 quality-adjusted life years (QALYs) and cost savings of 288, respectively with Co-Cr EES versus BMS. Results were robust to sensitivity analyses and were most sensitive to the price of clopidogrel. In the probabilistic sensitivity analysis, Co-Cr EES was associated with a greater than 99% chance of being cost savin
Computational Models for Prediction of Yeast Strain Potential for Winemaking from Phenotypic Profiles
Saccharomyces cerevisiae strains from diverse natural habitats harbour a vast amount of phenotypic diversity, driven by interactions between yeast and the respective environment. In grape juice fermentations, strains are exposed to a wide array of biotic and abiotic stressors, which may lead to strain selection and generate naturally arising strain diversity. Certain phenotypes are of particular interest for the winemaking industry and could be identified by screening of large number of different strains. The objective of the present work was to use data mining approaches to identify those phenotypic tests that are most useful to predict a strain's potential for winemaking. We have constituted a S. cerevisiae collection comprising 172 strains of worldwide geographical origins or technological applications. Their phenotype was screened by considering 30 physiological traits that are important from an oenological point of view. Growth in the presence of potassium bisulphite, growth at 40 degrees C, and resistance to ethanol were mostly contributing to strain variability, as shown by the principal component analysis. In the hierarchical clustering of phenotypic profiles the strains isolated from the same wines and vineyards were scattered throughout all clusters, whereas commercial winemaking strains tended to co-cluster. Mann-Whitney test revealed significant associations between phenotypic results and strain's technological application or origin. Naive Bayesian classifier identified 3 of the 30 phenotypic tests of growth in iprodion (0.05 mg/mL), cycloheximide (0.1 mu g/mL) and potassium bisulphite (150 mg/mL) that provided most information for the assignment of a strain to the group of commercial strains. The probability of a strain to be assigned to this group was 27% using the entire phenotypic profile and increased to 95%, when only results from the three tests were considered. Results show the usefulness of computational approaches to simplify strain selection procedures.Ines Mendes and Ricardo Franco-Duarte are recipients of a fellowship from the Portuguese Science Foundation, FCT (SFRH/BD/74798/2010, SFRH/BD/48591/2008, respectively) and Joao Drumonde-Neves is recipient of a fellowship from the Azores government (M3.1.2/F/006/2008 (DRCT)). Financial support was obtained from FEDER funds through the program COMPETE and by national funds through FCT by the projects FCOMP-01-0124-008775 (PTDC/AGR-ALI/103392/2008) and PTDC/AGR-ALI/121062/2010. Lan Umek and Blaz Zupan acknowledge financial support from Slovene Research Agency (P2-0209). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio
Quantifying the relative roles of selective and neutral processes in defining eukaryotic microbial communities
We have a limited understanding of the relative contributions of different processes that regulate microbial communities, which are crucial components of both natural and agricultural ecosystems. The contributions of selective and neutral processes in defining community composition are often confounded in field studies because as one moves through space, environments also change. Managed ecosystems provide an excellent opportunity to control for this and evaluate the relative strength of these processes by minimising differences between comparable niches separated at different geographic scales. We use next-generation sequencing to characterize the variance in fungal communities inhabiting adjacent fruit, soil and bark in comparable vineyards across 1000 kms in New Zealand. By compartmentalizing community variation, we reveal that niche explains at least four times more community variance than geographic location. We go beyond merely demonstrating that different communities are found in both different niches and locations by quantifying the forces that define these patterns. Overall, selection unsurprisingly predominantly shapes these microbial communities, but we show the balance of neutral processes also have a significant role in defining community assemblage in eukaryotic microbes
A variant of green fluorescent protein exclusively deposited to active intracellular inclusion bodies
Background: Inclusion bodies (IBs) were generally considered to be inactive protein deposits and did not hold any attractive values in biotechnological applications. Recently, some IBs of recombinant proteins were confirmed to show their functional properties such as enzyme activities, fluorescence, etc. Such biologically active IBs are not commonly formed, but they have great potentials in the fields of biocatalysis, material science and nanotechnology. Results: In this study, we characterized the IBs of DL4, a deletion variant of green fluorescent protein which forms active intracellular aggregates. The DL4 proteins expressed in Escherichia coli were exclusively deposited to IBs, and the IBs were estimated to be mostly composed of active proteins. The spectral properties and quantum yield of the DL4 variant in the active IBs were almost same with those of its native protein. Refolding and stability studies revealed that the deletion mutation in DL4 didn't affect the folding efficiency of the protein, but destabilized its structure. Analyses specific for amyloid-like structures informed that the inner architecture of DL4 IBs might be amorphous rather than well-organized. The diameter of fluorescent DL4 IBs could be decreased up to 100-200 nm by reducing the expression time of the protein in vivo. Conclusions: To our knowledge, DL4 is the first GFP variant that folds correctly but aggregates exclusively in vivo without any self-aggregating/assembling tags. The fluorescent DL4 IBs have potentials to be used as fluorescent biomaterials. This study also suggests that biologically active IBs can be achieved through engineering a target protein itself.open0
Protein Content and Oil Composition of Almond from Moroccan Seedlings: Genetic Diversity, Oil Quality and Geographical Origin
The protein and oil content and the fatty acid profile of the kernels of selected almond genotypes from four different Moroccan regions were determined in order to evaluate the kernel quality of the plant material of these different regions. The ranges of oil content (48.7–64.5 % of kernel DW), oleic (61.8–80.2 % of total oil), linoleic (11.4–27.0 %), palmitic (5.6–7.7 %), stearic (1.3–3.1 %), and palmitoleic (0.4–0.9 %) acid percentages agreed with previous results of other almond genotypes, but the protein content (14.1–35.1 % of kernel DW) showed that some genotypes had higher values than any previously recorded in almond. Some genotypes from mountainous regions showed kernels with very high oil content as well as high and consistent oleic and linoleic ratio, establishing a possible differentiation according to the geographical origin. These differences may allow establishing a geographical denomination for almond products. In terms of genetic diversity, oleic and linoleic acids were confirmed to be the most variable components of almond oil chemical composition among genotypes. Additionally, the genotypes with extreme favorable values, such as high protein content, could be incorporated into an almond breeding program aiming at an increase in kernel quality.Peer ReviewedPrunus amygdalusProtein contentOil contentFatty acidsQualityGenetic resourcesBreedingPublishe
Revascularization for coronary artery disease in diabetes mellitus: Angioplasty, stents and coronary artery bypass grafting
Author Manuscript: 2011 April 14Patients with diabetes mellitus (DM) are prone to a diffuse and rapidly progressive form of atherosclerosis, which increases their likelihood of requiring revascularization. However, the unique pathophysiology of atherosclerosis in patients with DM modifies the response to arterial injury, with profound clinical consequences for patients undergoing percutaneous coronary intervention (PCI). Multiple studies have shown that DM is a strong risk factor for restenosis following successful balloon angioplasty or coronary stenting, with greater need for repeat revascularization and inferior clinical outcomes. Early data suggest that drug eluting stents reduce restenosis rates and the need for repeat revascularization irrespective of the diabetic state and with no significant reduction in hard clinical endpoints such as myocardial infarction and mortality. For many patients with 1- or 2-vessel coronary artery disease, there is little prognostic benefit from any intervention over optimal medical therapy. PCI with drug-eluting or bare metal stents is appropriate for patients who remain symptomatic with medical therapy. However, selection of the optimal myocardial revascularization strategy for patients with DM and multivessel coronary artery disease is crucial. Randomized trials comparing multivessel PCI with balloon angioplasty or bare metal stents to coronary artery bypass grafting (CABG) consistently demonstrated the superiority of CABG in patients with treated DM. In the setting of diabetes CABG had greater survival, fewer recurrent infarctions or need for re-intervention. Limited data suggests that CABG is superior to multivessel PCI even when drug-eluting stents are used. Several ongoing randomized trials are evaluating the long-term comparative efficacy of PCI with drug-eluting stents and CABG in patients with DM. Only further study will continue to unravel the mechanisms at play and optimal therapy in the face of the profoundly virulent atherosclerotic potential that accompanies diabetes mellitus.National Institutes of Health (U.S.) (GM 49039
The prion-like RNA-processing protein HNRPDL forms inherently toxic amyloid-like inclusion bodies in bacteria
BACKGROUND: The formation of protein inclusions is connected to the onset of many human diseases. Human RNA binding proteins containing intrinsically disordered regions with an amino acid composition resembling those of yeast prion domains, like TDP-43 or FUS, are being found to aggregate in different neurodegenerative disorders. The structure of the intracellular inclusions formed by these proteins is still unclear and whether these deposits have an amyloid nature or not is a matter of debate. Recently, the aggregation of TDP-43 has been modelled in bacteria, showing that TDP-43 inclusion bodies (IBs) are amorphous but intrinsically neurotoxic. This observation raises the question of whether it is indeed the lack of an ordered structure in these human prion-like protein aggregates the underlying cause of their toxicity in different pathological states. RESULTS: Here we characterize the IBs formed by the human prion-like RNA-processing protein HNRPDL. HNRPDL is linked to the development of limb-girdle muscular dystrophy 1G and shares domain architecture with TDP-43. We show that HNRPDL IBs display characteristic amyloid hallmarks, since these aggregates bind to amyloid dyes in vitro and inside the cell, they are enriched in intermolecular β-sheet conformation and contain inner amyloid-like fibrillar structure. In addition, despite their ordered structure, HNRPDL IBs are highly neurotoxic. CONCLUSIONS: Our results suggest that at least some of the disorders caused by the aggregation of human prion-like proteins would rely on the formation of classical amyloid assemblies rather than being caused by amorphous aggregates. They also illustrate the power of microbial cell factories to model amyloid aggregation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-015-0284-7) contains supplementary material, which is available to authorized users
- …
