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Abstract

Saccharomyces cerevisiae strains from diverse natural habitats harbour a vast amount of phenotypic diversity, driven by
interactions between yeast and the respective environment. In grape juice fermentations, strains are exposed to a wide
array of biotic and abiotic stressors, which may lead to strain selection and generate naturally arising strain diversity. Certain
phenotypes are of particular interest for the winemaking industry and could be identified by screening of large number of
different strains. The objective of the present work was to use data mining approaches to identify those phenotypic tests
that are most useful to predict a strain’s potential for winemaking. We have constituted a S. cerevisiae collection comprising
172 strains of worldwide geographical origins or technological applications. Their phenotype was screened by considering
30 physiological traits that are important from an oenological point of view. Growth in the presence of potassium
bisulphite, growth at 40uC, and resistance to ethanol were mostly contributing to strain variability, as shown by the principal
component analysis. In the hierarchical clustering of phenotypic profiles the strains isolated from the same wines and
vineyards were scattered throughout all clusters, whereas commercial winemaking strains tended to co-cluster. Mann-
Whitney test revealed significant associations between phenotypic results and strain’s technological application or origin.
Naı̈ve Bayesian classifier identified 3 of the 30 phenotypic tests of growth in iprodion (0.05 mg/mL), cycloheximide (0.1 mg/
mL) and potassium bisulphite (150 mg/mL) that provided most information for the assignment of a strain to the group of
commercial strains. The probability of a strain to be assigned to this group was 27% using the entire phenotypic profile and
increased to 95%, when only results from the three tests were considered. Results show the usefulness of computational
approaches to simplify strain selection procedures.
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Introduction

Most European wine producers use commercial starter yeasts to

guarantee the reproducibility and the predictability of wine

quality. The advantages of fermentations containing Saccharomyces

cerevisiae starter cultures relies on the fact that they are rapid and

produce wine with desirable organoleptic characteristics through

successive processes and harvests [1,2]. In these fermentations the

winemaker has control over the microbiology of the process,

because it is expected that the inoculated yeast strain predominates

and suppresses the indigenous flora. Currently, there are about

200 commercial S. cerevisiae winemaking strains available, and it is

a common practice among wineries to use commercial starter

yeasts that were obtained in other winemaking regions.

S. cerevisiae strains from diverse natural habitats harbour a vast

amount of phenotypic diversity [3], driven by interactions between

yeast and the respective environment. In grape juice fermenta-

tions, strains are exposed to a wide array of biotic and abiotic

stressors [4], which may lead to strain selection and generate

naturally arising strain diversity. Outside the wineries, this

diversifying selection occurs due to unique pressures imposed

after expansion into new habitats [5–9]. This agrees with findings

showing that wine and sake strains are phenotypically more

diverse than would be expected from their genetic relatedness

[10].

Recent phylogenetic analyses of S. cerevisiae strains showed that

the species as a whole consists of both ‘‘domesticated’’ and ‘‘wild’’

populations. DNA sequence analysis revealed that domesticated

strains derived from two independent clades, corresponding to

strains from winemaking and sake. ‘‘Wild’’ populations are mostly

associated with oak trees, nectars or insects [11–13]. Although

some S. cerevisiae strains are specialized for the production of
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alcoholic beverages, they were derived from natural populations

that were not associated with industrial fermentations. This was

proposed once that the oldest lineages and the majority of

variation were found in strains from sources unrelated to wine

production [14].

The phenotypic diversity of S. cerevisiae strains has been explored

for decades in strain selection programmes to choose the ones that

enhance the wine’s sensorial characteristics and confer typical

attributes to specific wines. These strains are used as commercial

ones by winemakers to efficiently ferment grape musts and

produce desirable metabolites, associated with reduced off-flavours

[15,16]. Strain selection approaches are mentioned in many

studies aiming to characterize S. cerevisiae isolates obtained from

winemaking regions worldwide. The most relevant physiological

tests refer to fermentation rate and optimum fermentation

temperature, stress resistance (ethanol, osmotic and acidic), killer

phenotype, sulphur dioxide (SO2) tolerance and production,

hydrogen sulphide (H2S) production, glycerol and acetic acid

production, synthesis of higher alcohols (e.g. isoamyl alcohol, n-

propanol, isobutanol), b-galactosidase and proteolytic enzyme

activity, copper resistance, foam production and flocculation [17].

In our previous work [18] we evaluated the phenotypic and

genetic variability of 103 S. cerevisiae strains from the Vinho Verde

wine region (Northwest Portugal). We then applied several data

mining procedures to estimate a strain’s phenotypic behaviour

based on its genotypic data. We used mainly taxonomic tests and

strains from winemaking environments of one geographical origin.

This study was, to our best knowledge, the first attempt to

computationally associate genotypic and phenotypic data of S.

cerevisiae strains. We used subgroup discovery techniques to

successfully identify strains with similar genetic characteristics

(microsatellite alleles) that exhibited similar phenotypes.

Within the present study we expanded the strain collection to

172 isolates from worldwide geographical origins and technolog-

ical groups (wine, bread, sake, etc.) and included 30 tests with

biotechnological relevance for the selection of winemaking strains.

Our objective was to gain a deeper understanding of the

phenotypic diversity of a global strain collection and to infer

computational models that predict the biotechnological potential

or geographic origin of a strain from its phenotypic profile.

Results

Phenotypic characterization of the strain collection
A Saccharomyces cerevisiae collection was constituted with 172

strains obtained from different geographical origins as shown in

the map in Figure 1. As detailed in Table S1 (supplementary data),

the technological applications or environments from where the

strains were derived were: wine and vine (74 isolates), commercial

wine strains (47 isolates), other fermented beverages (12 isolates),

other natural environments – soil woodland, plants and insects (12

isolates), clinical (9 isolates), sake (6 isolates), bread (4 isolates),

laboratory (3 isolates), beer (1 isolate), and four isolates with

unknown origin.

A phenotypic screen was devised to evaluate strain-specific

patterns for a set of physiological tests, including also tests that are

important for winemaking strain selection. The first group of tests

were performed in microplates using supplemented grape must,

whereas a high reproducibility was obtained between experimental

replicates. The second set of tests consisted in the evaluation of

growth in solid culture media (BiGGY medium, Malt Extract Agar

supplemented with ethanol and sodium metabisulfite). Galactosi-

dase activity was evaluated by growth evaluation using Yeast

Nitrogen Base supplemented with galactose, as indicated in the

materials and methods section. After incubation, growth was

evaluated by visual scoring (solid media) or by A640 determination

(liquid media). Table 1 summarizes the number of strains

belonging to each of the phenotypic classes. Similarities between

strains were evident, but each strain showed a unique phenotypic

profile.

A total of 5160 phenotypic data points were obtained, from 172

strains and 30 tests. The concentrations of the added compounds

were chosen to obtain a wide range of tolerance patterns. As

expected, all strains grew well at 30uC, contrary to the growth at

40uC, where a large phenotypic diversity was observed. Most

strains were able to grow well at pH 8, contrarily to the pH value

of 2. As expected, cellular growth decreased with increasing

concentrations of ethanol (6–14% v/v, liquid media), whereas only

five isolates were able to grow well at the highest ethanol

concentration of 14% (v/v). When ethanol was combined with

sodium metabisulfite in solid culture media, growth was reduced

with increasing concentrations of ethanol (12 to 18%, v/v) or

sodium metabisulfite (50–100 mg/L). Resistance to sulphur

dioxide, which is an antioxidant and bacteriostatic agent used in

vinification, was tested by growth in the presence of wine must

supplemented with potassium bisulphite (KHSO3). For the

concentrations of 150 and 300 mg/L, 101 and 67 strains achieved

the highest class of growth, respectively. Resistance to the

fungicides iprodion, procymidon and to cycloheximide was rather

high at the indicated concentrations. Hydrogen sulphide produc-

tion was tested using BiGGY medium. The majority of the strains

were intermediate H2S producers with the exception of one strain

(from the group of wine and vine strains) that did not produce

H2S.

A global view of strain’s phenotypic diversity is shown in

Figures 2 and S1. Principal component analysis (PCA) of

phenotypic data (Figure 2) show the segregation of all 172 strains

(scores) and the loadings for phenotypic variables in the first two

PCA components. The phenotypes responsible for the highest

strain variability (Figure 2a) were associated with growth patterns

in the presence of potassium bisulphite (KHSO3), at 40uC, in a

finished wine supplemented with glucose (0.5%, w/v), and

resistance to ethanol in liquid media (10 and 14%, v/v). PC-1

(31%) and PC-2 (15%) explained 46% of strain variability and

segregated strains by phenotypic behaviour into some patterns, as

shown in Figure 2b. The group of sake strains (dark dot) and the

group of natural strains (dark square), tended to be separated by

the second component, accumulating in the lower part of the

PCA, indicating that they were influenced by the presence of

ethanol in the medium (higher resistance), and by the growth in

the presence of potassium bisulphite (300 mg/L, lower resistance).

Strains isolated from vines or wine (dark star) showed a

heterogeneous phenotypic behaviour since they were dispersed

throughout the PCA plot for both components. A similar tendency

was observed for commercial strains (light star); however, the

majority of strains tended to concentrate in the upper part of the

PCA, indicative of a trend to higher KHSO3 resistance and lower

ethanol resistance. The nine clinical strains were distributed in

both PCA components, showing no discriminant results in any of

the phenotypic tests.

UPGMA (Unweighted Pair Group Method with Arithmetic

Mean) algorithm was used to hierarchical cluster the 172 strains.

The dissimilarity between two strains was measured using

Euclidean distance (Figure S1). The combined phenotypes of

wine strains did not separate this group of strains that were rather

scattered throughout all the clusters. Commercial strains (light star)

tended to be more predominant in the clusters shown in the lower
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part of the dendogram, where some of the clusters are constituted

only by commercial strains.

We further analysed phenotypic diversity through k-means

clustering algorithm. Using silhouette score [19] we identified 3

distinct clusters (Table 2), composed of 38, 90 and 44 strains

respectively. The phenotypes that most distinguished the strains, as

indicated by high values of information gain to classify strains into

clusters, were growth at the highest and lowest temperature tested

(18 and 40uC). Cluster 2 was constituted of strains that didn’t grow

at both 18 and 40uC, whereas cluster 1 and 3 included strains that

grew at both temperatures, but with more pronounced growth at

40uC, in particular for strains of cluster 3. Other tests that were

also relevant for the cluster separation included growth in the

presence of NaCl (1.5 M), KHSO3 (150 and 300 mg/L), ethanol

6% (v/v) and at pH 2. The strain cluster membership is displayed

in the phenotypic data PCA visualization (supplementary

Figure S2).

Statistical analysis
The number of strains belonging to each group of technological

applications or environment varies between 1 and 74. To assess a

possible influence of a sample bias, due to an unequal number of

representatives from each group, we determined the 95%

confidence intervals for average Manhattan distance [20] between

two strains in a selected group (composed by at least 5 strains). The

distance was estimated based on the strain’s entire phenotypic

profile. The lower and upper bound of each confidence interval

were determined by percentiles of average distances for 10000

bootstraps samples. For example, with this analysis we show that

while the group of commercial strains (47 isolates) includes 31

commercial strains isolated in France, this should not bias our

statistical analysis on utility of strains. Namely, the 95% confidence

interval for average distances between pairwise combinations of

commercial strains from France (6.37, 8.01) overlaps with the

confidence interval of commercial strains from other geographical

origins (4.97, 8.13). The inclusion of a high number of strains from

France does not change the limits of the confidence interval of the

group of commercial strains. A similar result was observed for the

group of wine and vine strains that includes numerous strains from

Portugal: the 95% confidence interval for average distances

between pairwise combinations of strains from Portugal (8–12,

9.83) overlaps with the same interval for wine and vine strains

from other geographical locations (8.06, 9.59).

Mann-Whitney test is mostly used to identify statistically

significant associations between two data sets in which data

instances in each group are measured on ordinal level and when

there is an unequal number of members in the classes to be

compared. This test was used to search for relationships between

phenotypic results for the 172 strains, and their shared geograph-

ical origin or technological application group. After the dichoto-

mization of variables (geographical origin and technological

application or origin), Mann-Whitney test was performed for each

phenotypic variable and p-values were computed and further

adjusted using Bonferroni correction. Statistical analysis using

Mann-Whitney test revealed 300 associations between phenotypes

and technological application or origin of strains, whereas

statistical significance was found for 11 associations (Bonferroni

adjusted p-value lower than 0.1). For each phenotypic test, we

computed the probability of each phenotypic class (0–3) according

to its contribution to the observed association. The most significant

associations between a phenotypic class and a technological group

are reported in Table 3. Two associations were found for the

resistance to iprodion, whereas class 3 and 2 were associated with

strains collected from wine/vineyards and commercial strains,

respectively. Capacity to grow in the presence of potassium

bisulphite (150 mg/mL, classes 2 and 3) was associated with

commercial wine strains. Natural isolates (87%–89%) were

associated with class 2 of growth in wine supplemented with

glucose, both at 0.5 and 1% (w/v), contrarily to 57% of

commercial strains that were unable to grow in wine supplement-

ed with glucose (0.5%, w/v). The lower ability of commercial

strains to grow at higher ethanol concentrations was also

supported by the finding of one significant association for absent

growth (class 0) in liquid medium containing ethanol (14%, v/v).

Figure 1. Geographical location of 172 yeast strains. Underlined identifiers indicate the original designation of sequenced strains [12]. Symbols
represents the strains technological applications or origin: black star – wine and vine; grey star – commercial wine strain; black square – clinical; grey
square – natural isolates; black circle – sake; grey circle – other fermented beverages; black pentagon – beer; grey pentagon- baker; black rectangle –
laboratory; grey rectangle – unknown biological origin.
doi:10.1371/journal.pone.0066523.g001

Prediction of Winemaking Yeast Potential

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e66523



About half of the strains included in the groups shared the inability

to grow in must containing SDS (0.01%, w/v) and CuSO4

(5 mM), but grew well in cycloheximide-supplemented must (76%

of strains, class 2). An identical approach was undertaken to find

associations between the phenotypic results and the geographical

origin of strains, but no statistically relevant results were obtained

(data not shown).

Prediction of technological group based on phenotypic
results

Our next objective was to construct a model that would predict

strain’s technological group from its phenotypic profile. K-nearest

neighbour algorithm (kNN) and naı̈ve Bayesian classifiers [21], as

implemented in the Orange data mining software were used for

modelling.

The predictive performance of both classifiers was evaluated in

terms of area under the Receiver-Operating-Characteristics

(ROC) curve, using 5-fold cross validation [22]. Table 4 shows

the confusion matrix of naı̈ve Bayesian classifications in test data

sets of cross-validation; kNN results are not shown, as these were

similar for both modelling techniques. Cross validated AUC score

was 0.70. Correct assignments were found for the larger groups of

commercial wine strains and strains obtained from wine and

vineyards, where 36 (77%) and 54 (73%) strains respectively, were

accurately allocated. The same computational technique was also

used to explore which phenotypes mostly contributed to the

assignment of a strain to the commercial wine group. Figure 3

represents a nomogram that shows naı̈ve Bayesian classifier results

[23]. Three phenotypes were considered by the classifier as the

ones contributing more positively to build the model, having the

remaining ones a smaller impact. To predict the commercial

potential of a strain, the contribution of each phenotype was

scored in the scale from 2100 to 100, and the individual scores

were summed-up to read-out the probability of the predicted class.

For the present data set, growth in must containing the fungicide

Table 1. Number of strains belonging to different phenotypic classes, regarding values of optical density (Class 0: A640 = 0.1; Class
1: 0.2,A640.0.4; Class 2: 0.5,A640.1.0; Class 3: A640.1.0), growth patterns in solid media, or colour change in BiGGY medium.

Phenotypic test Type of medium Phenotypic class of growth

0 1 2 3

30uC liquid (must) 0 0 3 168

18uC liquid (must) 51 120 1 0

40uC liquid (must) 28 14 80 50

pH 2 liquid (must) 101 68 3 0

pH 8 liquid (must) 0 0 19 153

KCl (0.75 M) liquid (must) 0 2 146 24

NaCl (1.5 M) liquid (must) 84 79 9 0

CuSO4 (5 mM) liquid (must) 124 45 3 0

SDS (0.01% w/v) liquid (must) 139 32 1 0

Ethanol 6% (v/v) liquid (must) 0 2 36 134

Ethanol 10% (v/v) liquid (must) 17 28 85 42

Ethanol 14% (v/v) liquid (must) 82 35 50 5

Ethanol 12% (v/v) solid (MEA) 150 20 1 1

Ethanol 12% (v/v) + Na2S2O5 (75 mg/L) solid (MEA) 159 14 0 0

Ethanol 12% (v/v) + Na2S2O5 (100 mg/L) solid (MEA) 169 3 0 0

Ethanol 14% (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 148 24 0 0

Ethanol 16% (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 163 9 0 0

Ethanol 18% (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 165 7 0 0

KHSO3 (150 mg/L) liquid (must) 34 11 26 101

KHSO3 (300 mg/L) liquid (must) 57 19 29 67

Wine supplemented with glucose (0.5% w/v) liquid 103 45 24 0

Wine supplemented with glucose (1% w/v) liquid 115 41 16 0

Iprodion (0.05 mg/mL) liquid (must) 1 0 28 143

Iprodion (0.1 mg/mL) liquid (must) 1 1 13 157

Procymidon (0.05 mg/mL) liquid (must) 0 0 7 165

Procymidon (0.1 mg/mL) liquid (must) 1 0 9 162

Cycloheximide (0.05 mg/mL) liquid (must) 3 0 7 162

Cycloheximide (0.1 mg/mL) liquid (must) 2 1 19 150

H2S production solid (BiGGY) 1 11 105 55

Galactosidase activity liquid (YNB) 0 21 98 53

MEA: Malt Extract Agar.
doi:10.1371/journal.pone.0066523.t001
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Figure 2. Principal component analysis of phenotypic data for 172 strains. (a) 230 phenotypic tests (loadings). Numbers indicate
phenotypic tests, as mentioned in Table 1: (1) 230uC; (2) 218uC; (3) 240uC; (4) – pH 2; (5) – pH 8; (6) – KCl (0.75 M); (7) – NaCl (1.5 M); (8) – CuSO4

(1.5 M); (9) – SDS (0.01%); (10) – ethanol 6% (v/v) liquid medium; (11) – ethanol 10% (v/v) liquid medium; (12) – ethanol 14% (v/v) liquid medium; (13)
– ethanol 12% (v/v) solid medium; (14) – ethanol 12% (v/v) solid medium + Na2S2O5 (75 mg/L); (15) – ethanol 12% (v/v) solid medium + Na2S2O5

(100 mg/L); (16) – ethanol 14% (v/v) solid medium + Na2S2O5 (50 mg/L); (17) – ethanol 16% (v/v) solid medium + Na2S2O5 (50 mg/L); (18) – ethanol

Prediction of Winemaking Yeast Potential
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iprodion (0.05 mg/mL), in cycloheximide (0.1 mg/mL) and in the

presence of potassium bisulphite (150 mg/mL) were the three

features with the most relevant contribution for the mathematical

assignment of a strain to the commercial group (Figure 3a). The

probability of a strain to be assigned to the group of commercial

strains is 0.27 (27%) when considering the strains entire

phenotypic profile and increases to 0.95 (95%) when only the

three phenotypic results mentioned in Figure 3a are taken into

consideration, as shown in the probability scale present in

Figure 3b.

Discussion

Within our previous work [18] we developed computational

techniques to relate the genotypes and phenotypes of 103

Saccharomyces cerevisiae strains from a winemaking region. The

isolates were characterized regarding their allelic combinations for

11 microsatellites and phenotypic screens included mainly

taxonomic criteria but also some tests with biotechnological

relevance. Subgroups were found for strains sharing allelic

combinations and specific phenotypes such as low ethanol

resistance, growth at 30uC and growth in media containing

galactose, raffinose or urea. Herein, we aim to extend the work to

a phenotypically mostly heterogeneous strain collection of 172 S.

cerevisiae isolates from worldwide origins, to computationally relate

the phenotype with the strain’s geographical origins and to make

predictions about a strain’s biotechnological potential based on

phenotypic data. The group of phenotypic tests used herein was

based on approaches that are generally applied for the selection of

S. cerevisiae winemaking strains [17].

The collection of 172 strains from worldwide geographical

origins revealed a high phenotypic diversity (Figures 2, S2 and

Table 2), which is in agreement with previous studies [3,10,18,24–

27]. A significantly higher phenotypic diversity was observed in the

present study compared to our results from 2009 using 103

Portuguese wine yeast strains [18]. In particular, the inclusion of

new tests compared to our previous study allowed a more detailed

analysis of the phenotypic variability of strains associated with

winemaking environments. Recent studies aimed to describe the

elements that shaped the genomes of S. cerevisiae strains, suggesting

that populations comprise distinct domesticated and natural

groups, as well as mosaics within these groups, based on the

strain origin and application [12,28,29]. Clinical isolates for

example, do not derive from a common ancestor, but rather

represent multiple events in which environmental strains oppor-

tunistically colonize humans [28,30].

Genetic rearrangements and intra-strain variation is character-

istic for this species [31,32], which might explain the rather high

phenotypic variability that was described in recent studies.

Camarasa [3] showed that some phenotypes (resistance to high

sugar concentrations, ability to complete fermentation and low

acetate production) were able to distinguish groups of strains

according to their ecological niches, providing evidence for

phenotypic evolution driven by environmental adaptation. This

high phenotypic variation in stressful conditions was also revealed

by Kvitek et al., showing the existence of unique features shared by

strains from similar habitats [10]. Our data are in agreement with

the previously mentioned studies regarding the high phenotypic

diversity. They also confirm the findings of Legras and co-workers

[33], that found populational substructures of S. cerevisiae strains

according to their technological application or origin, using

multilocus microsatellite typing. In the work of Legras only 28%

of the diversity was associated with geographical origins, which

suggests local domestication events. We herein investigated the

utility of data mining to improve our understanding of relations

between phenotypes and the strains technological application or

origin. The developed models can also be useful to optimize

screening tests and to find commercial wine yeast candidates from

strain collections.

Using Mann-Whitney test, 11 significant associations were

found between a particular phenotypic result and a technological

application or origin of the strains (Table 3). The most significant

results were found for the resistance to iprodion, growth in

potassium bisulphite and in wine supplemented with glucose.

Iprodion is a dicarboximide contact fungicide used to control a

wide variety of fungal pests on vegetables, ornamentals, pome and

stone fruit, root crops, cotton and sunflowers. S. cerevisiae shows a

higher resistance to this fungicide than other yeast species such as

Candida albicans. In this species iprodion stimulates glycerol

synthesis and inhibits the cell growth for several days, contrarily

to S. cerevisiae where a low toxicity was observed [34,35]. Our

results showed that iprodion resistance (0.05 mg/mL) was higher

in strains from wine and vineyards compared to commercial wine

strains. The higher iprodion resistance among strains obtained

from wineries and vineyards might be explained by the evolution

of this trait upon recurrent exposure, which does not apply for

commercial wine strains that are added to clarified musts that

should not contain this fungicide. The low ethanol resistance of

commercial wine strains in liquid media containing 14% (v/v)

18% (v/v) solid medium + Na2S2O5 (50 mg/L); (19) – KHSO3 (150 mg/L); (20) – KHSO3 (300 mg/L); (21) – wine supplemented with glucose 0.5% (w/v);
(22) – wine supplemented with glucose 1% (w/v); (23) – Iprodion (0.05 mg/mL); (24) – Iprodion (0.1 mg/mL); (25) – Procymidon (0.05 mg/mL); (26) –
Procymidon (0.1 mg/mL); (27) – Cycloheximide (0.05 mg/mL); (28) – Cycloheximide (0.1 mg/mL); (29) – H2S production; (30)– galactosidase activity. (b)
– 172 strains (scores) distribution. Symbols represents the strains technological applications or origin: black star – wine and vine; grey star –
commercial wine strain; black square – clinical; grey square – natural isolates; black circle – sake; grey circle – other fermented beverages; black
pentagon – beer; grey pentagon- baker; black rectangle – laboratory; grey rectangle – unknown biological origin.
doi:10.1371/journal.pone.0066523.g002

Table 2. Phenotypic tests mostly contributing for the division
of strains into three clusters, in terms of information gain,
obtained with k-means clustering algorithm.

Phenotypic test Information gain Cluster

1 2 3

18uC 0,33 1 0 1

40uC 0,33 2 0 3

NaCl (1.5M) 0,26 0 0 1

KHSO3 (300 mg/L) 0,23 3 0 3

Ethanol 6% (v/v) – liquid
medium

0,23 3 2 3

pH 2 0,21 0 0 1

KHSO3 (150 mg/L) 0,21 3 0 3

Total number of strains 38 90 44

Numbers in the last three columns represent the most characteristic value in
terms of phenotypic class of strains included in the clusters, for the mentioned
phenotypic tests.
doi:10.1371/journal.pone.0066523.t002
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ethanol was somehow unexpected, because these strains are

usually selected for high ethanol resistance. This could be

explained by the fact that the mathematical relations were

observed for ethanol concentrations above the values that usually

occur in wines (10–13%, v/v). Results showed also that

commercial strains tended to a better growth in media containing

potassium bisulphite, a compound used as wine antiseptic and

antioxidant, reflecting also an adaptive mechanism among this

group of strains.

We found that the large phenotypic variability between strains

could be associated with the technological application or origin of

the strains (Table 3) rather than their geographical origin, once

that no relevant relations were considered for the last analysis. The

naı̈ve Bayesian classifier was used to assign a strain to their

technological application or origin group, based on their

phenotypic profile (Table 4). This association was achieved for

the majority of strains belonging to the commercial and wine and

vine groups (77% and 73% respectively). The cross-validated

performance of this method yielded an AUC score of 0.70, that is

Table 3. Relevant associations (adjusted p,0.1) between phenotypic results and strain’s technological application or origin,
obtained using Mann-Whitney test and after Bonferroni correction.

Phenotypic test
Class of phenotypic
result Technological group/origin

Adjusted
p-value

% of strains sharing
positive association *

Iprodion (0.05 mg/mL) 2 Commercial 3.2461028 82.0

Iprodion (0.05 mg/mL) 3 Wine and vine 0.015 56.4

KHSO3 (150 mg/L) 2, 3 Commercial 0.001 59.3

Wine supplemented with glucose (0.5%, w/v) 0 Commercial 0.075 57.0

Wine supplemented with glucose (0.5%, w/v) 2 Natural isolate 0.002 87.2

Wine supplemented with glucose (1%, w/v) 2 Natural isolate 0.041 89.5

Ethanol 14% (v/v) – liquid medium 0 Commercial 0.004 64.5

Cycloheximide (0.1 mg/mL) 2 Commercial 0.007 75.6

Procymidon (0.1 mg/mL) 2 Other fermented beverages 0.005 92.4

SDS (0.01%, w/v) 0 Commercial 0.078 45.3

CuSO4 (5 mM) 0 Commercial 0.075 50.6

*Percentage of strains that share the phenotypic result and belong to the described group or that didn’t share the phenotypic result nor belong to that group.
doi:10.1371/journal.pone.0066523.t003

Figure 3. Nomogram showing naı̈ve Bayesian classifier results for the prediction of commercial strains based on phenotypic classes
of growth for each test. (a) Performance of three phenotypic tests that contributed in a positive way to predict commercial strains; (b) Probability
of predicting commercial strains when considering the entire phenotypic profile (grey circle), or only the three phenotypic tests mentioned in panel
(a) by the blue dots (black circle).
doi:10.1371/journal.pone.0066523.g003
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considered as moderate [22] and lies in between the values of an

arbitrary and perfect classification (AUC = 0.5 and 1.0, respec-

tively). Poor results were obtained for the remaining groups, which

is due to the corresponding small number of isolates. These results

demonstrate the potential of the predictive models to classify

strains based on results of phenotypic screens.

Bayesian classifier used the strains phenotypic profiles for

prediction of commercial strains, and identified 3 of the 30

phenotypic tests (growth in musts containing iprodion (0.05 mg/

mL), cycloheximide (0.1 mg/mL) or potassium bisulphite

(150 mg/mL)) as the ones providing more information for the

assignment of strains to the commercial group. When using only 3

tests, rather than the entire phenotypic profile, the probability of a

strain to be classified as commercial increases significantly (from

27% to 95%).

In conclusion, our results demonstrate the usefulness of

computational approaches to describe phenotypic variability

among groups of S. cerevisiae strains that also might occur as

adaptive mechanisms in specific environments. The herein

developed models can make predictions about the biotechnolog-

ical potential of strains and simplify the selection of candidate

strains to be used as commercial wine strains.

Materials and Methods

Strain collection
A Saccharomyces cerevisiae strain collection was constituted,

comprising 172 strains with different geographical origins and

technological applications or origins (Figure 1 and Table S1 –

supplementary data). This collection includes strains used for

winemaking (commercial and natural isolates that were obtained

from winemaking environments), brewing, bakery, distillery (sake,

cachaça) and ethanol production, laboratory strains and also

strains from particular environments (e.g. pathogenic strains,

isolates from fruits, soil and oak exudates). The complete genome

sequence of thirty strains is currently available [12] (their original

strain code is mentioned in the map of Figure 1). All strains were

coded (Zn) and stored at 280uC in cryotubes containing 1 mL

glycerol (30% v/v).

Phenotypic characterization
Phenotypic screening was performed considering a wide range

of physiological traits that are also important from an oenological

point of view.

In a first set of phenotypic tests, strains were inoculated into

replicate wells of 96-well microplates. Isolates were grown

overnight in YPD medium (yeast extract 1% w/v, peptone 1%

w/v, glucose 2% w/v), and the optical density (A640) was then

determined and adjusted to 1.0. After washing with peptone (1%

w/v), 15 mL of this suspension were inoculated in quadruplicate in

microplate wells containing 135 mL of white grape must of the

variety Loureiro, to a cellular density of 56106 cells/mL (A640

= 0.1). Final optical density was determined after 22 h (30uC, 200

rpm) in a microplate spectrophotometer. All microplates were

carefully sealed with parafilm, and no evaporation was observed

for incubation temperatures of 30uC and 40uC. As shown in

Table 1, this approach included the following tests: growth at

various temperatures (18, 30 and 40uC), evaluation of ethanol

resistance (6, 10 and 14%, v/v), tolerance to several stress

conditions caused by extreme pH values (2 and 8), osmotic/saline

stress (0.75 M KCl and 1.5 M NaCl). Growth was also assessed in

the presence of potassium bisulfite (KHSO3, 150 and 300 mg/L),

copper sulphate (CuSO4, 5 mM), sodium dodecyl sulphate (SDS,

0.01%, w/v), the fungicides iprodion (0.05 and 0.1 mg/mL) and
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procymidon (0.05 and 0.1 mg/mL), as well as cycloheximide (0.05

and 0.1 mg/mL). These tests were carried out using Loureiro

grape must supplemented with the mentioned compounds. The

growth in finished wines was determined by adding glucose (0.5

and 1%, w/v) to a commercial white wine (12.5% v/v alcohol

content). Galactosidase activity was evaluated by adding galactose

(5% w/v) to Yeast Nitrogen Base (YNB, DifcoTM, Ref. 239210),

using test tubes with 5 mL culture medium and 56106 cells/mL,

followed by 5 to 6 days of incubation at 26uC.

Other tests were performed using solid media. Overnight

cultures were prepared as previously described, adjusted to an

optical density (A640) of 10.0 and washed. One ml of this

suspension was placed on the surface of the culture media

mentioned below. Hydrogen sulphide production was evaluated

using BiGGY medium (SIGMA-ALDRICH, Ref. 73608) [36],

followed by incubation at 27uC for 3 days. The colony colour,

which represents the amount of H2S produced was then analysed,

attributing a score from 0 (no colour change) to 3 (dark brown

colony). Ethanol resistance (12%, v/v) and the combined

resistance to ethanol (12, 14, 16 and 18%, v/v) and sodium

bisulphite (Na2S2O5; 75 and 100 mg/L) was evaluated by adding

the mentioned compounds to Malt Extract Agar (MEA, SIGMA-

ALDRICH, Ref. 38954), and growth was visually scored after

incubation (2 days at 27uC).

All phenotypic results were assigned to a class between 0 and 3

(0: no growth (A640 = 0.1) or no visible growth on solid media or

no colour change of the BiGGY medium; 3: at least 1.5 fold

increase of A640, extensive growth on solid media or a dark brown

colony formed in the BiGGY medium; scores 1 and 2

corresponded to the respective intermediate values) as shown in

table S2.

Data analysis
The phenotypic variability was evaluated by principal compo-

nent analysis (PCA), available in the Unscrambler X software

(Camo). The BioNumerics software (Applied Maths) was used for

clustering, dendogram drawing and calculation of cophenetic

correlation coefficients. Mann-Whitney test was applied to the

phenotypic data set, including Bonferroni correction, to find

relevant associations between phenotypic data and the strain’s

technological or geographical origin. A set of standard predictive

data-mining methods, such as naı̈ve Bayesian classifier and k

nearest-neighbours algorithm [21], as implemented in the Orange

data mining suite [37,38], were used for the inference of prediction

models. For prediction scoring, area under the receiver operating

characteristics (ROC) curve (AUC) was used [22], which estimates

the probability that the predictive model would correctly

differentiate between distinct locations or distinct technological

application or origins, given the associated pairs of strains.

Supporting Information

Figure S1 Phenotypic variation of 172 strains under 30
growth conditions. Strains are organized according to

UPGMA-based hierarchical clustering (cophenetic correlation

factor = 0.75), using Euclidean distance correlation to estimate

phenotypic profile similarities. Symbols represents the strains

technological applications or origin: black star – wine and vine;

grey star – commercial wine strain; black square – clinical; grey

square – natural isolates; black circle – sake; grey circle – other

fermented beverages; black pentagon – beer; grey pentagon-

baker; black rectangle – laboratory; grey rectangle – unknown

biological origin.

(TIF)

Figure S2 PCA representation of the three strain
clusters, obtained with k-means clustering algorithm.
The symbols represent the belonging of the 172 strains shown in

the phenotypic data PCA (Figure 2b) to each cluster: circles –

cluster 1 (38 strains); lines – cluster 2 (90 strains); squares – cluster

3 (44 strains).

(TIF)

Table S1 Origin and technological application of the
172 Saccharomyces cerevisiae strains.

(DOCX)

Table S2

(XLSX)
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